• Title/Summary/Keyword: lipases

Search Result 118, Processing Time 0.021 seconds

Synthesis of Stereoisomeric Trifluoroethylmandelates and Their Stereospecificity for the Uses as the Substrate of Lipases in Organic Solvent (유기용매내에서 리파제의 입체특이성 반응기질로서 이용하기 위한 Trifluoroethylmandelate의 이성질체 합성 및 입체특이성)

  • Kwon Dae Young
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.125-130
    • /
    • 1992
  • Stereoisomers of trifluoroethylmandelate(mandelic acid trifluoroethylester) were synthesized from each isomer of mandelic acid and trifluoroethanol with p-toluene sulfonic acid in order to study the enantioselectivity of lipase in organic solvent. The products were identified by $^1H$ NMR and elemental analysis and their physical properties such as melting point, densities and specific optical rotations($[{\alpha}]_{25}{^D}$) were also characterized. $[{\alpha}]_{25}{^D}$ of (+)- and (-)-trifluoroethylmandelate were +74° and -75.4°, respectively. The trifluoroethylmandelate was found out to be as a good substrate for the transesterfication stereoselectivity of lipases in organic solvent. Any significant difference of the lipase catalyzed transesterification activity between (+)- and (-)-methylchloropropionate was not found, and even lipase activity of transesterfication was not found with high optical polar (+)-and (-)-methylmandelate.

  • PDF

Studies of interesterification properties of irradiated lipases (방사선 조사선량에 따른 lipase의 interesterification 반응특성 변화 연구)

  • Lee, Chi-Woo;Heo, Yoon-Ji;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • This study was conducted to prove the effect of irradiation on lipases (lipase AK, lipase AH, lipase PS-D, Lipozyme TLIM, Lipozyme RMIM and Novozyme SP435) which were used for interesterification reaction using batch type reactor. Through such interesterification, structured lipid (1(3)-palmitoyl-2-oleoyl-3(1)-stearoyl, POS) was synthesized by lipase treated with irradiation at different doses (0, 3, 7, 14, 29 and 59 kGy) using canola oil, palmitic ethyl ester (PEE) and stearic ethyl ester (StEE). After the reaction, fatty acid composition of triacylglycerol (TAG) in structured lipid was analyzed to compare the lipase activity. The results showed that activity of the irradiated lipase AH, PS-D and Novozyme SP435 with certain dose (3 kGy) were slightly improved. Such change of lipase activity suggested that irradiation might affect on the interesterification properties. Especially, Lipase AK, Lipozyme TLIM and Lipozyme RMIM after at 3 kGy irradiation showed that content of stearic acid ($C_{18:0}$) was increased while palmitic acid ($C_{16:0}$) decreased in the interesterified products.

Purification and the Catalytic Site Residues of Pseudonomas fragil Lipase Expressed in Escherichia coli

  • Kim, Tae Ryeon;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.401-406
    • /
    • 1995
  • The P. fragi lipase overexpressed in E. coli as a fusion protein of 57 kilodalton (kDa) has been purified through glutathione-agarose affinity chromatography by elution with free glutathione. The general properties of the purified GST-fusion protein were characterized by observing absorbance of released p-nitrophenoxide at 400 nm which was hydrolyzed from the substrate p-nitrophenyl palmitate. The optimum condition was observed at 25 $^{\circ}C$, pH 7.8 with 0.4 ${\mu}g$ of protein and 1.0 mM substrate in 0.6% (v/v) TritonX-100 solution. Also the lipase was activated by Ca+2, Mg+2, Ba+2 and Na+ but it was inhibited by Co+2 and Ni+2. pGEX-2T containing P. fragi lipase gene as expression vector was named pGL191 and used as a template for the site-directed mutagenesis by sequential PCR steps. A Ser-His-Asp catalytic triad similar to that present in serine proteases may be present in Pseudomonas lipase. Therefore, the PCR fragments replacing Asp217 to Arg and His260 to Arg were synthesized, and substituted for original fragment in pGL19. The ligated products were transformed into E. coli NM522, and pGEX-2T harboring mutant lipase genes were screened through digestion with XbaI and StuI sites created by mutagenic primers, respectively. No activity of mutant lipases was observed on the plate containing tributyrin. The purified mutant lipases were not activated on the substrate and affected at pH variation. These results demonstrate that Asp217 and His260 are involved in the catalytic site of Pseudomonas lipase.

Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia territorii GP3 from Mount Papandayan Soil

  • Putra, Ludwinardo;Natadiputri, Griselda Herman;Meryandini, Anja;Suwanto, Antonius
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.944-951
    • /
    • 2019
  • Lipases are industrial enzymes that catalyze both triglyceride hydrolysis and ester synthesis. The overexpression of lipase genes is considered one of the best approaches to increase the enzymatic production for industrial applications. Subfamily I.2. lipases require a chaperone or foldase in order to become a fully-activated enzyme. The goal of this research was to isolate, clone, and co-express genes that encode lipase and foldase from Burkholderia territorii GP3, a lipolytic bacterial isolate obtained from Mount Papandayan soil via growth on Soil Extract Rhodamine Agar. Genes that encode for lipase (lipBT) and foldase (lifBT) were successfully cloned from this isolate and co-expressed in the E. coli BL21 background. The highest expression was shown in E. coli BL21 (DE3) pLysS, using pET15b expression vector. LipBT was particulary unique as it showed highest activity with optimum temperature of $80^{\circ}C$ at pH 11.0. The optimum substrate for enzyme activity was $C_{10}$, which is highly stable in methanol solvent. The enzyme was strongly activated by $Ca^{2+}$, $Mg^{2+}$, and strongly inhibited by $Fe^{2+}$ and $Zn^{2+}$. In addition, the enzyme was stable and compatible in non-ionic surfactant, and was strongly incompatible in ionic surfactant.

Enzymatic production and industrial application of structured lipids (재구성 지질의 효소적 생산과 산업적 이용)

  • Lee, Soo Jeong;Song, Ye Jin;Lee, Jung Eun;Choi, Eun Ji;Kim, Byung Hee
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.148-156
    • /
    • 2018
  • Structured lipids are lipids in which the composition and/or positional distribution of fatty acids have been chemically or enzymatically modified from their natural biosynthetic form. Because structured lipids have desired nutritional, physicochemical, textural or physiological properties for applications in processed foods, functional foods, or nutraceuticals, many research activities have been aimed at their commercialization. The enzymatic production of structured lipids using lipases as the biocatalysts has a big potential in the future market due to the specificity or selectivity of the lipases. This article introduced some examples of specialty structured lipids that have been enzymatically produced and have been utilized as commercialized products. The commercialized products include medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free plastic fats, low-calorie fats/oils, and health-beneficial fatty acid-rich oils.

Production of 4-Ethyl Malate through Position-Specific Hydrolysis of Photobacterium lipolyticum M37 Lipase

  • Lim, Chae Ryeong;Lee, Ha young;Uhm, Ki-Nam;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.672-679
    • /
    • 2022
  • Microbial lipases are used widely in the synthesis of various compounds due to their substrate specificity and position specificity. 4-Ethyl malate (4-EM) made from diethyl malate (DEM) is an important starting material used to make argon fluoride (ArF) photoresist. We tested several microbial lipases and found that Photobacterium lipolyticum M37 lipase position-specifically hydrolyzed DEM to produce 4-EM. We purified the reaction product through silica gel chromatography and confirmed that it was 4-EM through nuclear magnetic resonance analysis. To mass-produce 4-EM, DEM hydrolysis reaction was performed using an enzyme reactor system that could automatically control the temperature and pH. Effects of temperature and pH on the reaction process were investigated. As a result, 50℃ and pH 4.0 were confirmed as optimal reaction conditions, meaning that M37 was specifically an acid lipase. When the substrate concentration was increased to 6% corresponding to 0.32 M, the reaction yield reached almost 100%. When the substrate concentration was further increased to 12%, the reaction yield was 81%. This enzyme reactor system and position-specific M37 lipase can be used to mass-produce 4-EM, which is required to synthesize ArF photoresist.

Lipase-Catalyzed Reactions for Fats and Oils in Non-Polar Solvent (유기용매 내에서의 유지의 리파제 촉매반응)

  • Daeseok Han;Kwon, Dae-Young;Rhee, Joon-Shick
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.250-258
    • /
    • 1988
  • Lipases are well known as the enzymes which catalyze the hydrolysis of ester bonds combining aliphatic chains and glycerol on mono-, di- and triglycerides. Their reactions are characterized by be-ing heterogeneous and catalyzing the water-insoluble substrates. This property has been one of the Hurdles which delayed the application of lipases in fats and oils industry, However, with the development of biological reaction system of which organic solvent is introduced in part or whole as the reaction media, enzymatic manipulation of fats and oils is attracting increasing attention from the academic and industrial sectors. Trials in two-phase system and reversed micellar system to produce fatty acids through enzymatic hydrolysis of triglycerides preyed to be efficient in respect to volumetric productivity, fat hydrolysis rate, product separation, etc. In organic solvent system lipases have been found to have the ability to catalyze aminolysis, transesterification, esterification, thiotransesterification and oximolysis that are virtually impossible to catalyze in water. The organic solvent system is being extensively used in interesterifying glycerides to produce a fat with the modified physical and chemical nature.

  • PDF

Immobilization of Lipases on Amberlite and Their Interesterification Reaction Characteristics (Amberlite에 고정화된 Lipase 제조 및 효소적 Interesterification을 이용한 반응 특성 연구)

  • Park, So Ra;Lee, Ki Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.315-322
    • /
    • 2014
  • Immobilized lipases were prepared by physical adsorption using lipase AK, AY, AH, PS and R on Amberlite$^{(R)}$XAD$^{(R)}$7 HP resin. With the immobilized lipases (10%), structured lipid was synthesized by enzymatic interesterification of canola oil, palmitic ethyl ester, and stearic ethyl ester in order to study the reaction characteristics. Among the lipase, the highest protein content was obtained from lipase AH (11.41%) before immobilization, while the highest levels of bound protein was observed from immobilized lipase AK (63.91%). Immobilized lipase AK had the highest interesterification activity (38.3% of total saturated fatty acid). Lipase AK was also used for a continuous reaction in which the slow flow of reactant resulted in increased reaction rate. Reusability of immobilized AK, AH and PS increased at the second reaction (120-196.5%). However, the activity of immobilized AK, which had the highest bound protein content (63.91%) decreased after the third reaction, while the activity of immobilized AH and PS was maintained until the sixth reaction.

Water Activity Control in Lipase-catalyzed Reaction System

  • Rhee, Joon-Shick;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.191-196
    • /
    • 1998
  • This mini review describes the effects of water activity (${\alpha}_w$) on the kinetics, regio- and enantioselectivities of lipases, and various methods for measuring and controlling ${\alpha}_w$ in lipase catalyzed reaction in organic solvent.

  • PDF