• Title/Summary/Keyword: lipase inhibition

Search Result 133, Processing Time 0.032 seconds

Determination and Characterization of Thermostable Esterolytic Activity from a Novel Thermophilic Bacterium Anoxybacillus gonensis A4

  • Faiz, Ozlem;Colak, Ahmet;Saglam, Nagihan;Canakci, Sabriye;Belduz, Ali Osman
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.588-594
    • /
    • 2007
  • A novel hot spring thermophile, Anoxybacillus gonensis A4 (A. gonensis A4) was investigated in terms of capability of tributyrin degradation and characterization of its thermostable esterase activity by the hydrolysis of p-nitrophenyl butyrate (PNPB). It was observed that A. gonensis A4 has an esterase with a molecular weight of 62 kDa. The extracellular crude preparation was characterized in terms of substrate specificity, pH and temperature optima and stability, kinetic parameters and inhibition/activation behaviour towards some chemicals and metal ions. Tributyrin agar assay showed that A. gonensis A4 secreted an esterase and $V_{max}$ and $K_m$ values of its activity were found to be 800 U/L and 176.5 ${\mu}M$, respectively in the presence of PNPB substrate. The optimum temperature and pH, for A. gonensis A4 esterase was $60-80^{\circ}C$ and 5.5, respectively. Although the enzyme activity was not significantly changed by incubating crude extract solution at $30-70^{\circ}C$ for 1 h, the enzyme activity was fully lost at $80^{\circ}C$ for same incubation period. The pH-stability profile showed that original crude esterase activity increased nearly 2-fold at pH 6.0. The effect of some chemicals on crude esterase activity indicated that A. gonensis A4 produce an esterase having serine residue in active site and -SH groups were essential for its activity.

Studies on the effects of central nervous system stimulants and depressant on exocrine pancreas (흰쥐의 담취액 분비에 미치는 수종 중추흥분 및 억제물질의 영향)

  • Park, Suh-Kyung
    • The Korean Journal of Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 1976
  • The clinical abuse of C.N.S. stimulants during recent years has directed particular attention. Effect of various organs other than C.N.S. was also extensively investigated with those agents. It has been shown that, although there is a wide variation in sensitivity between species, caffeine stimulates gastric secretion in man, cat, guinea pig and dog. Roth and Ivy(1944) reported that caffeine and histamine acted synergistically in stimulating gastric secretion in the cat. Vaille et al(1966) studied that production of pancreatic juice in the rat was enhanced, but bile secretion was not affected by caffeine. In clinical study the effect of chlorpromazine on the external pancreatic secretion in the 24 subjects, the volume fell more than 20% in 7 subjects. (Skajaa et al 1960) It is widely known that C.N.S. stimulants enhanced spontaneous motor activity in the mice, while tranquilizers depressed the activity. Woo (1975) reported that the group of mice treated with chlorpromazine showed markedly inhibited motor activity and in the group of mice treated with amphetamine, there was a significant increase in the motor activity. The purpose of the present experiment was to study the effects of C.N.S. stimulants and depressant on the exocrine pancreas, and on the spontaneous motor activity in the rats. The results obtained are summarized as follows. 1. In animals treated with xanthine derivatives, the volume of pancreatobiliary secretion was markedly increased. 2. Total bilirubin output was elevated markedly in the xanthine derivatives and imipramine treated animals. The bilirubin concentration was increased in xanthine derivatives treated group. 3. The concentration of cholate in the bile was decreased in the chlorpromazine treated group. 4. The activity of lipase in the pancreatobiliary juice was elevated markedly in the xanthine derivatives treated group only. 5. In the all experimental groups, the activity of amylase in pancreatobiliary juice was significantly elevated. 6. In the caffeine treated group, spontaneous motor activity was markedly increased in $30{\sim}60$ minutes, and the amphetamine treated group showed the increased motor activity in first 30 minutes. 7. The group of rats treated with chlorpromazine showed markedly inhibited motor activity after 30 minutes, and the imipramine treated group showed similar result but less inhibition.

  • PDF

Dietary ε-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

  • Hosomi, Ryota;Yamamoto, Daiki;Otsuka, Ren;Nishiyama, Toshimasa;Yoshida, Munehiro;Fukunaga, Kenji
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • ${\varepsilon}$-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or L-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis.

Effects of Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture Solution on Adipocyte Differentiation and Gene Expression in 3T3-L1 Adipocytes (마황천오 약침액이 3T3-L1 지방세포 분화 및 유전자발현에 미치는 영향)

  • Kang, Kyung-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.31 no.4
    • /
    • pp.168-178
    • /
    • 2014
  • Objectives : Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture(MCP) has been used to treat obesity in Clinical Korean Medicine. MCP solution(MCPS) is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and lipogenesis. Methods : In the present study, we examined the effects of MCPS on differentiation and lipogenesis of 3T3-L1 adipocytes. To elucidate the mechanism of the effects of MCPS on lowering lipid content in 3T3-L1 adipocytes, we examined whether MCPS modulates the expressions of transcription factors to induce lipogenesis and adipogenic genes related to regulate the accumulation of lipids. Results : Our results showed that MCPS significantly inhibited differentiation and lipogenesis of 3T3-L1 adipocytes in a dose-dependent manner. MCPS suppressed the mRNA expressions of cytidine-cytidine-adenosine-adenosine-thymidine(CCAAT)/enhancer binding proteins ${\alpha}$($C/EBP{\alpha}$), C/EBP ${\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$) genes related to the induction of adipose differentiation. MCPS inhibited the mRNA expressions of adipose-specific aP2, adipsin, lipoprotein lipase(LPL), CD36, TGF-${\beta}$, and leptin genes related to the fat formation. MCPS downregulated the mRNA expressions of liver X receptor(LXR) ${\alpha}$ and fatty acid synthase(FAS) genes related to the induction of lipogenesis. In addition, MCPS reduced the production of adipocyte-induced pro-inflammatory cytokines. Conclusions : MCPS could regulate the accumulation of lipids and expression of adipogenic genes via inhibition of transcript factors related to induction of adipose differentiation.

Biocontrol of Anthracnose in Pepper Using Chitinase, ${\beta}$-1,3 Glucanase, and 2-Furancarboxaldehyde Produced by Streptomyces cavourensis SY224

  • Lee, So Youn;Tindwa, Hamisi;Lee, Yong Seong;Naing, Kyaw Wai;Hong, Seong Hyun;Nam, Yi;Kim, Kil Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1359-1366
    • /
    • 2012
  • A strain of Streptomyces cavourensis subsp. cavourensis (coded as SY224) antagonistic to Colletotrichum gloeosporioides infecting pepper plants was isolated. SY224 produced lytic enzymes such as chitinase, ${\beta}$-1,3-glucanase, lipase, and protease in respective assays. To examine for antifungal activity, the treatments amended with the nonsterilized supernatant resulted in the highest growth inhibition rate of about 92.9% and 87.4% at concentrations of 30% and 10%, respectively. However, the sterilized treatments (autoclaved or chloroform treated) gave a lowered but significant inhibitory effect of about 63.4% and 62.6% for the 10% supernatant concentration, and 75.2% and 74.8% for the of 30% supernatant concentration in the PDA agar medium, respectively, indicative of the role of a non-protein, heat stable compound on the overall effect. This antifungal compound, which inhibited spore germination and altered hyphal morphology, was extracted by EtOAc and purified by ODS, silica gel, Sephadex LH-20 column, and HPLC, where an active fraction was confirmed to be 2-furancarboxaldehyde by GS-CI MS techniques. These results suggested that SY224 had a high potential in the biocontrol of anthracnose in pepper, mainly due to a combined effect of lytic enzymes and a non-protein, heat-stable antifungal compound, 2-furancarboxaldehyde.

Effects of Local Pancreatic Renin-Angiotensin System on the Microcirculation of Rat with Severe Acute Pancreatitis

  • Pan, Zhijian;Feng, Ling;Long, Haocheng;Wang, Hui;Feng, Jiarui;Chen, Feixiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.299-307
    • /
    • 2015
  • Severe acute pancreatitis (SAP) is normally related to multiorgan dysfunction and local complications. Studies have found that local pancreatic renin-angiotensin system (RAS) was significantly upregulated in drug-induced SAP. The present study aimed to investigate the effects of angiotensin II receptors inhibitor valsartan on dual role of RAS in SAP in a rat model and to elucidate the underlying mechanisms. 3.8% sodium taurocholate (1 ml/kg) was injected to the pancreatic capsule in order for pancreatitis induction. Rats in the sham group were injected with normal saline in identical locations. We also investigated the regulation of experimentally induced SAP on local RAS expression in the pancreas through determination of the activities of serum amylase, lipase and myeloperoxidase, histological and biochemical analysis, radioimmunoassay, fluorescence quantitative PCR and Western blot analysis. The results indicated that valsartan could effectively suppress the local RAS to protect against experimental acute pancreatitis through inhibition of microcirculation disturbances and inflammation. The results suggest that pancreatic RAS plays a critical role in the regulation of pancreatic functions and demonstrates application potential as AT1 receptor antagonists. Moreover, other RAS inhibitors could be a new therapeutic target in acute pancreatitis.

G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells

  • Cho, Eunah;Kwon, Yeo-Jung;Ye, Dong-Jin;Baek, Hyoung-Seok;Kwon, Tae-Uk;Choi, Hyung-Kyoon;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.591-602
    • /
    • 2019
  • Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrin-regulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ${\beta}$-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

Evaluation of Immunomodulatory and Biological Effects of Aquilaria crassna Extracts (침향 추출물의 면역조절 및 생리활성 분석)

  • You-Lim, Hwang;Kwang-Youn, Kim;Sun Nyoung, Yu;Kwang-Il, Park;Soon-Cheol, Ahn
    • Herbal Formula Science
    • /
    • v.30 no.4
    • /
    • pp.249-257
    • /
    • 2022
  • Objectives : Aquilaria crassna is a traditional herbal medicine, which is used to treat allergies, diabetes, neurological diseases. Recently, Aquilaria crassna extracts have been reported in anti-bacterial and anti-inflammatory activities. In this study, various solvents fraction of Aquilaria crassna were investigated on various physiological activities. Methods : According to the polarity, the solvents fraction of Aquilaria crassna were confirmed through TLC, and the activities of the extracts were confirmed in anti-diabetes, anti-obesity, whitening, anti-gout, and anti-inflammation. Results : TLC results showed that ACM and ACM/E have similar patterns and most of the components were transferred to ACM/E. Treatment with ACM and ACM/E fraction were significantly decreased the generation of NO in lipopolysaccharide (LPS)-stimulated macrophage cells. Analysis of biological activities such as α-glucosidase, protein tyrosine phosphatase (PTP1B), tyrosinase, xanthine oxidase (XO) and pancreatic lipase inhibition, showed that ACM and ACM/E have more inhibitory effects than other fractions. Conclusions : Therefore, the results of the present study clearly demonstrate that Aquilaria crassna and its constituents might be beneficial in the prevention or treatment of immune-regulating effects.

Rosa acicularis Leaves Exert Anti-obesity Activity through AMPK-dependent Lipolysis and Thermogenesis in Mouse Adipocytes, 3T3-L1 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.46-46
    • /
    • 2023
  • It has been reported that Rosa acicularis has anti-obesity activity by inhibiting the digestive lipase activity. However, there is a lack of clear in vitro studies regarding the anti-obesity activity of Rosa acicularis. Therefore, in this study, we aimed to verify the anti-obesity activity of Rosa acicularis leaves (RAL) and elucidate its mechanism of action in 3T3-L1 preadipocytes. RAL dose-dependently inhibited the accumulation of lipid droplets and triacylglycerol. RAL had no effect on cell proliferation and survival in undifferentiated 3T3-L1 cells, but it inhibited cell proliferation in differentiating 3T3-L1 cells. RAL increased ATGL, p-HSL, and HSL, and decreased perilipin-1 in differentiating 3T3-L1 cells. In addition, RAL reduced lipid droplet accumulation and increased free glycerol content in differentiated 3T3-L1 cells. RAL increased ATGL and HSL in differentiated 3T3-L1 cells. Also, RAL increased p-AMPK, PPARγ, UCP-1, and PGC-1α in differentiating 3T3-L1 cells. AMPK inhibition by Compound C attenuated RAL-mediated increase of ATGL, HSL, PPARγ, and UCP-1 in 3T3-L1 cells. Taken together, it is thought that RAL may inhibit lipid accumulation through lipolysis and thermogenesis via the activation of AMPK in adipocytes.

  • PDF

Steroid Components of Marine-Derived Fungal Strain Penicillium levitum N33.2 and Their Biological Activities

  • Chi K. Hoang;Cuong H. Le; Dat T. Nguyen;Hang T. N. Tran;Chinh V. Luu;Huong M. Le;Ha T. H. Tran
    • Mycobiology
    • /
    • v.51 no.4
    • /
    • pp.246-255
    • /
    • 2023
  • Genus Penicillium comprising the most important and extensively studied fungi has been well-known as a rich source of secondary metabolites. Our study aimed to analyze and investigate biological activities, including in vitro anti-cancer, anti-inflammatory and anti-diabetic properties, of metabolites from a marine-derived fungus belonging to P. levitum. The chemical compounds in the culture broth of P. levitum strain N33.2 were extracted with ethyl acetate. Followingly, chemical analysis of the extract leaded to the isolation of three ergostane-type steroid components, namely cerevisterol (1), ergosterol peroxide (2), and (3β,5α,22E)-ergosta-6,8(14),22-triene-3,5-diol (3). Among these, (3) was the most potent cytotoxic against human cancer cell lines Hep-G2, A549 and MCF-7 with IC50 values of 2.89, 18.51, and 16.47 ㎍/mL, respectively, while the compound (1) showed no significant effect against tested cancer cells. Anti-inflammatory properties of purified compounds were evaluated based on NO-production in LPS-induced murine RAW264.7 macrophages. As a result, tested compounds performed diverse inhibitory effects on NO production by the macrophages, with the most significant inhibition rate of 81.37±1.35% at 25 ㎍/mL by the compound (2). Interestingly, compounds (2) and (3) exhibited inhibitory activities against pancreatic lipase and α-glucosidase enzymes in vitro assays. Our study brought out new data concerning the chemical properties and biological activities of isolated steroids from a P. levitum fungus.