• Title/Summary/Keyword: link interference

Search Result 386, Processing Time 0.022 seconds

Cooperative Priority-based Resource Allocation Scheduling Scheme for D2D Communications Underlaying 5G Cellular Networks (5G 셀룰러 네트워크 하의 D2D통신을 위한 협력적 우선순위 기반의 자원할당 스케줄링)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.225-232
    • /
    • 2020
  • The underlaying communication scheme in 5G cellular network is a very promising resource sharing scheme, and it is an effective scheme for improving service performance of 5G and reducing communication load between a cellular link and a device to device (D2D) link. This paper proposes the algorithm to minimize the resource interference that occurs when performing 5G-based multi-class service on gNB(gNodeB) and the cooperative priority-based resource allocation scheduling scheme (CPRAS) to maximize 5G communication service according to the analyzed control conditions of interference. The proposed CPRAS optimizes communication resources for each device, and it optimizes resource allocation according to the service request required for 5G communication and the current state of the network. In addition, the proposed scheme provides a function to guarantee giga-class service by minimizing resource interference between a cellular link and a D2D link in gNB. The simulation results show that the proposed scheme is better system performance than the Pure cellular and Force cellular schemes. In particular, the higher the priority and the higher the cooperative relationship between UE(User Equipment), the proposed scheme shows the more effective control of the resource interference.

Performance of Parallel Interference Cancellation with Reverse-Link Synchronous Transmission Technique for DS-CDMA System in Multipath Fading Channels with Imperfect Power Control (불완전 전력 제어와 다중 경로 페이딩 채널에서 DS-CDMA 시스템을 위한 역방향링크 동기식 전송을 채용하는 병렬식 간섭 제거기의 성능)

  • Hwang Seung-Hoon;Kim Yong-Seok;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.87-92
    • /
    • 2005
  • This paper analyzes the performance for an improved multistage parallel interference cancellation (PIC) technique with a reverse-link synchronous transmission technique (RLSTT) for DS-CDMA system in a frequency-selective Rayleigh fading channel with an imperfect power control scheme. The performance degradation due to power control error (PCE), which is approximated by a log-normally distributed random variable, is estimated as a function of the standard deviation of the PCE. The uncoded bit error performance is evaluated in order to estimate the system capacity. Comparing with the conventional one-stage PIC system, we show achievable gain around $60\%$ by the RLSTT even in the presence of PCE. We conclude that the capacity can be further improved via RLSTT, which alleviates the detrimental effects of the PCE

FFFR-Based Resource Allocation Mechanism for Interference Mitigation of D2D Communications in LTE-Advanced Networks (LTE-Advanced 네트워크에서 간섭 완화를 위한 FFFR 기반의 D2D 자원 할당 기법)

  • Na, Lee Han;Kim, Hyang-Mi;Kim, SangKyung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2015
  • D2D (Device-to-Device) communication underlaying LTE-advanced networks is a promising technology to improve the system capacity and spectral efficiency. By sharing the same radio resources with cellular user equipments, D2D communications can significantly enhance the overall spectral efficiency. However, it may cause interference between D2D link and cellular link. Careful resource allocation and interference coordination between cellular and D2D communications are very important and need to be properly handled. This paper proposes a radio resource allocation scheme based on FFFR (Flexible Fractional Frequency Reuse) for D2D communication underlaying cellular networks. The base station selects randomly resource blocks assigned to cellular users, and reuses them for a D2D pair. Through simulations, we have confirmed that the proposed scheme improves the system throughput, reduces the computational complexity, and mitigates the interference of D2D link and cellular link.

A Novel Frequency Planning and Power Control Scheme for Device-to-Device Communication in OFDMA-TDD Based Cellular Networks Using Soft Frequency Reuse (OFDMA-TDD 기반 셀룰러 시스템에서 디바이스간 직접통신을 위한 SFR 자원할당 및 전송 전력조절 방법)

  • Kim, Tae-Sub;Lee, Sang-Joon;Lim, Chi-Hun;Ryu, Seungwan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.885-894
    • /
    • 2012
  • Currently, Demand of data traffic has rapidly increased by popular of smart device. It is very difficult to accommodate demand of data traffic by limited resource of base station (BS). To solve this problem, method has proposed that the Device-to-Device (D2D) reduce frequency overload of the BS and all of the user equipment (UE) inside the BS and neighbor BS don't allow communicating directly to BS. However, in LTE-Advance system cellular link and sharing radio resources of D2D link, the strong interference of the cellular network is still high. So we need to eliminate or mitigate the interference. In this paper, we use the transmission power control method and Soft Frequency Reuse (SFR) resource allocation method to mitigate the interference of the cellular link and D2D link. Simulation results show that the proposed scheme has high performance in terms of Signal to Noise Ratio (SINR) and system average throughput.

A Single Feedback Based Interference Alignment for Three-User MIMO Interference Channels with Limited Feedback

  • Chae, Hyukjin;Kim, Kiyeon;Ran, Rong;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.692-710
    • /
    • 2013
  • Conventional interference alignment (IA) for a MIMO interference channel (IFC) requires global and perfect channel state information at transmitter (CSIT) to achieve the optimal degrees of freedom (DoF), which prohibits practical implementation. In order to alleviate the global CSIT requirement caused by the coupled relation among all of IA equations, we propose an IA scheme with a single feedback link of each receiver in a limited feedback environment for a three-user MIMO IFC. The main feature of the proposed scheme is that one of users takes out a fraction of its maximum number of data streams to decouple IA equations for three-user MIMO IFC, which results in a single link feedback structure at each receiver. While for the conventional IA each receiver has to feed back to all transmitters for transmitting the maximum number of data streams. With the assumption of a random codebook, we analyze the upper bound of the average throughput loss caused by quantized channel knowledge as a function of feedback bits. Analytic results show that the proposed scheme outperforms the conventional IA scheme in term of the feedback overhead and the sum rate as well.

A Novel Hearability Enhancement Method for Forward-Link Multilateration Using OFDM Signal

  • Park, Ji-Won;Lim, Jeong-Min;Lee, Kyu-Jin;Sung, Tae-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.638-648
    • /
    • 2013
  • Together with the GPS-based approach, geo-location through mobile communication networks is a key technology for location-based service. To save the cost, most geo-location system is implemented on the existed network service, which has a cellular structure. Still, multilateration is limited in cellular structure because it is difficult for the mobile terminal to acquire distance measurements from multiple base stations. This low hearability in the receiver is caused by co-channel interference and multipath environment. Therefore, hearability enhancement is necessary for multilateration under multipath and interference environment. Former time domain based hearability methods were designed for real signals. However, orthogonal frequency division multiplexing (OFDM) signal, which its usage has been increased in digital wireless communication, is a complex signal. Thus, different hearability enhancement method is needed for OFDM signals. This paper proposes a hearability enhancement method for forward-link multilateration using OFDM signals, which employ interference cancellation and multipath mitigation. A novel interference cancellation and multipath mitigation strategy for complex-valued OFDM signals is presented that has an iterative structure. Simulation results show that the proposed multilateration method provides the user's position with an accuracy of less than 80m through the mobile WiMAX cellular network in multipath environment.

Measurement of Carrier-to-Noise due to Sun Interference Effect on C-band for THAICOM 2 Down-link Station at Mung, Khon-kaen

  • A. Waisontia;K. Charouensuk;S.Noppanakeepong;Lee, N. laruji;N. Heammkorn;Y. Moriya
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2043-2046
    • /
    • 2002
  • This paper studies on Sun interference effects or Sun outage effects on C-band satellite reception signal for THAICOM2. The THAICOM2 satellite is at 78.5 degree East 〔co-located with THAICOM3〕. The down link station was located in Khon-kaen, longitude 102.83 degree East and latitude 16.43 degree North. The antenna diameter is 4.6 meters for C-band downlink station. Total 9 times of sun interference events were occurred during summer and fall of 2001 and these about 53 minutes altogether. The Maximum CM degradation of the THAICOM2 system was around 11 dB. The Sun interference events of 53 minutes of one year are 0.0122 percents of the C-band contact time when 21 hours of contact time is used f3r broadcasting a day.

  • PDF

M_CSPF: A Scalable CSPF Routing Scheme with Multiple QoS Constraints for MPLS Traffic Engineering

  • Hong, Daniel W.;Hong, Choong-Seon;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.733-746
    • /
    • 2005
  • In the context of multi-protocol label switching (MPLS) traffic engineering, this paper proposes a scalable constraintbased shortest path first (CSPF) routing algorithm with multiple QoS metrics. This algorithm, called the multiple constraint-based shortest path first (M_CSPF) algorithm, provides an optimal route for setting up a label switched path (LSP) that meets bandwidth and end-to-end delay constraints. In order to maximize the LSP accommodation probability, we propose a link weight computation algorithm to assign the link weight while taking into account the future traffic load and link interference and adopting the concept of a critical link from the minimum interference routing algorithm. In addition, we propose a bounded order assignment algorithm (BOAA) that assigns the appropriate order to the node and link, taking into account the delay constraint and hop count. In particular, BOAA is designed to achieve fast LSP route computation by pruning any portion of the network topology that exceeds the end-to-end delay constraint in the process of traversing the network topology. To clarify the M_CSPF and the existing CSPF routing algorithms, this paper evaluates them from the perspectives of network resource utilization efficiency, end-to-end quality, LSP rejection probability, and LSP route computation performance under various network topologies and conditions.

  • PDF

Multi user interference cancellation in satellite to ground uplink system Based on improved WPIC algorithm

  • Qingyang, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5497-5512
    • /
    • 2016
  • An improved optimal weights based on parallel interference cancellation algorithm has been proposed to cancel for interference induced by multi-user access satellite to ground uplink system. Due to differences in elevation relative motion between the user and the satellite, as well as access between users, resulting in multi-user access interference (Multi-user Access Interference, MUI), which significantly degrade system performance when multi-user access. By steepest gradient method, it obtained based on the MMSE criterion, parallel interference cancellation adjust optimal weights to obtain the maximum SINR. Compared to traditional parallel interference cancellation (Parallel Interference Cancellation, PIC) algorithm or serial interference cancellation ( Successive interference Cancellation, SIC), the accuracy of which is not high and too many complex iterations, we establish the multi-user access to the satellite to ground up link system to demonstrate that the improved WPIC algorithm could be provided with high accuracy and relatively low number of iterations.

Robust QFT(Quantitative Feedback Theory) Controller Design of Parallel Link (평행링크 매니퓰레이터의 강인한 QFT(Quantitative Feedback Theory)제어기 설계)

  • Kang, Min-Goo;Byun, Gi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2249-2251
    • /
    • 2001
  • This paper proposes that it minimizes interference between link at high speed trajectory tracking of 2-degree parallel link manipulator and QFT(Quantitative Feedback Theory) controller which robust structure uncertainty and disturbance of plant. And using ICD(Individual Channel Design), it separates two channel from multivariable system, parallel link manipulator and designs robust controller with applying MISO QFT to each channel. Finally, we make sure of robustness and excellence of QFT controller through simulation and experiment.

  • PDF