• Title/Summary/Keyword: linearization control

Search Result 531, Processing Time 0.054 seconds

Linearization of the Nonlinear Control Systems (비선형 제어 시스템의 선형화)

  • 이홍기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.651-657
    • /
    • 2003
  • Linearization is one of the most successful approaches nonlinear system control. The objective of this paper is to survey the recent results in linearization theory. It is hoped to be useful in understanding various linearization problems and challenging unsolved problems.

Switching Control of Ball and Beam System using Partial State Feedback: Jacobian and Two-Step Linearization Methods (자코비안 및 2단 선형화 기법과 부분 상태궤환을 이용한 볼-빔 시스템의 스위칭 제어)

  • Lee, Kyung-Tae;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.819-832
    • /
    • 2017
  • We propose a new switching control scheme for a ball and beam system by utilizing two linearization methods. First, the Jacobian linearization is applied and state observer is developed afterward. Then, motivated [6], the approximate input-output linearization is carried out, and after that, the Jacobian linearization is applied along with the design of state observer. Since the second approach requires two linearizations, it is called a two-step linearization method. The state observer is needed for the estimation of the velocities of ball and motor movement. Since the Jacobian linearization based controller tends to provide faster response at the initial time, and after that, the two-step linearization based controller tends to provide better response in terms of output overshoot and convergence to the origin, it is natural to give a switching control scheme to provide the best overall control response. The validity of our control scheme is shown in both simulation and experimental results.

Controller Structure and Performance According to Linearization Methods in the Looper ILQ Control for Hot Strip Finishing Mills (열간사상압연기의 루퍼 ILQ 제어에 있어 선형화 기법에 따른 제어기 구조 및 성능)

  • Park, Cheol-Jae;Hwang, I-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • This paper studies on the relation between linearization methods and controller gains in the looper ILQ(lnverse Linear Quadratic optimal control) system for hot strip finishing mills. Firstly, two linear models arc respectively derived by a linearization method using Taylor's series expansion and a static state feedback linearization method, respectively, and the linear models are compared with the nonlinear model. Secondly, the looper servo controllers are respectively designed on the basis of two linearization models. Finally, the relation between the performances of two ILQ servo controllers and the linearization methods, and the structures and control gains of two controllers are evaluated by a computer simulation.

Feedback Linearization Control of Grid-Interactive PWM Converters with LCL Filters

  • Kim, Dong-Eok;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.288-299
    • /
    • 2009
  • This paper proposes a feedback linearization control scheme of AC/DC PWM converters with LCL input filters using no damping resisters. Feedback linearization techniques use a transformation from nonlinear system models into equivalent linear models in a simpler form. The feedback linearization scheme in this work has cascade structures unlike usual feedback linearization, therefore it has an advantage that it is possible to limit the capacitor current to a certain level. The performance of the proposed controller is validated with simulation and experimental results.

Switching Control of Electromagnetic Levitation System based on Jacobian Linearization and Input-Output Feedback Linearization (자코비안 선형화 및 입-출력 궤환 선형화에 기반한 자기 부상 시스템의 스위칭 제어)

  • Jeong, Min-Gil;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.578-585
    • /
    • 2015
  • Electromagnetic levitation system(EMLS) is one of the well known nonlinear systems. Often, it is not easy to control an EMLS due to its high nonlinearity. In this paper, we first apply two linearization method(jacobian and input-output feedback linearization) to design two feedback controllers for an EMLS. Then, by observing the advantages of each controller, we design a switching control algorithm which engage two controllers depending on the position of the steel ball in order to achieve the improved performance over each controller. The validity of our switching control approach is verified via both simulation and actual experimental results.

Feedback Linearization for the Looper System of Hot Strip Mills

  • Hwang, I-Cheol;Kim, Seong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.56.5-56
    • /
    • 2002
  • This paper studies on the feedback linearization of the looper system for hot strip mills, where the looper system plays an important role in regulating the strip tension. Firstly, nonlinear dynamic equations of the looper system are simply introduced. Secondly, using the static feedback linearization algorithm, a linear model of the looper system is obtained, of which usefulness is validated from comparison between the linear model and the nonlinear model, and design of LQI(Linear Ouadratic Integral optimal control) and ILQ (Inverse Linear Quadratic optimal control) looper control systems. In result, it is shown that the linear looper model by the feedback linearization well describes nonlin...

  • PDF

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

Linearization of T-S Fuzzy Systems and Robust Optimal Control

  • Kim, Min-Chan;Wang, Fa-Guang;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung;Ahn, Ho-Kyun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • This paper proposes a novel linearization method for Takagi.sugeno (TS) fuzzy model. A T-S fuzzy controller consists of linear controllers based on local linear models and the local linear controllers cannot be designed independently because of overall stability conditions which are usually conservative. To use linear control theories easily for T-S fuzzy system, the linearization of T-S fuzzy model is required. However, The linearization of T-S fuzzy model is difficult to be achieved by using existing linearization methods because fuzzy rules and membership functions are included in T-S fuzzy models. So, a new linearization method is proposed for the T-S fuzzy system based on the idea of T-S fuzzy state transformation. For the T-S fuzzy system linearized with uncertainties, a robust optimal controller with the robustness of sliding model control(SMC) is designed.

Comparative Performance Evaluation of Nonlinear Controllers for Longitudinal Control in a Vehicle Platooning (군집주행의 종방향 제어를 위한 비선형 제어기 성능 비교 평가)

  • 전성민;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.218-218
    • /
    • 2000
  • Advanced Vehicle Control Systems(AVCS) is one of the key elements in Intelligent Transportation Systems(ITS). This paper considers the problem of longitudinal control in vehicle platoon on a straight lane of a highway. In a very simplified situation, longitudinal vehicle dynamics contains many nonlinear elements. The nonlinear characteristics are mainly composed of an engine, a torque converter, and a drag force. In this paper, sliding control, one of nonlinear control methods, is applied to longitudinal automated vehicle control for platooning. Output feedback linearization is also simulated for comparison with the sliding control. Simulations for comparative study for the adopted controllers such as sliding control and output feedback linearization are peformed under the same conditions. This Paper aims at clarifying the characteristics of sliding control and output feedback linearization.

  • PDF

Hydraulic Control System Using a Feedback Linearization Controller and Disturbance Observer - Sensitivity of System Parameters -

  • Kim, Tae-hyung;Lee, Ill-yeong;Jang, Ji-seong
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • Hydraulic systems have severe nonlinearity inherently compared to other systems like electric control systems. Hence, precise modeling and analysis of the hydraulic control systems are not easy. In this study, the control performance of a hydraulic control system with a feedback linearization compensator and a disturbance observer was analyzed through experiments and numerical simulations. This study mainly focuses on the quantitative investigation of sensitivity on system uncertainties in the hydraulic control system. First, the sensitivity on the system uncertainty of the hydraulic control system with a Feedback Linearization - State Feedback Controller (FL-SFC) was quantitatively analyzed. In addition, the efficacy of a disturbance observer coupled with the FL-SFC for the hydraulic control system was verified in terms of overcoming the control performances deterioration owing to system uncertainty.