• Title/Summary/Keyword: linearization

Search Result 965, Processing Time 0.023 seconds

A Study on the Control of Parallel-Type Inverted Pendulum by $H_\infty$ Control ($H_\infty$제어에 의한 병렬형 도립진자의 제어에 관한 연구)

  • Yang, Joo-Ho;Byun, Jung-Hoan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.178-189
    • /
    • 1995
  • In this pater, authors derive the state - space equiation about the patallel - type inverted pendulum which is adopted as control object, and constitute the control system by $H_\infty$control theory. The modeling error is unavoidably existed by linearization error, and so on. We regard this modeling error which is determined from the identification through frequency response as unstructured model uncertainty. An augmented state - space equiation with frequency weighting function is constructed for application of the $H_\infty$theory, and the mixed sensitivity problem is considered. The weighting functions are determined in consideration of the model uncertainty and the response of system in frequency region. The $H_\infty$controller is designed by using software package for controller design. From results of response simulation, the control system designed with $H_\infty$theory guarantees low sensitivity for disturbance as well as robustness against the model uncertainties.

  • PDF

Design and Implementation of an Analog Predistorter for M/W Repeaters (M/W 중계기용 아날로그 Predistorter의 설계 및 구현)

  • Kang, Sang-Gee;Ryu, Joon-Gyu;Chang, Dae-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • The probability of an oscillation occurrence in M/W frequency conversion repeaters is low on account of the different operating frequency of the input and output signals. The probability of interference caused by the M/W frequency conversion repeaters to other systems is also low because the systems are used in the line-of-sight. Therefore M/W frequency conversion repeaters are generally used for retransmitting the signal received from base station to the islands. This paper describes the design and implementation of analog predistorter for M/W frequency conversion repeaters in mobile communications. The M/W repeaters convert IF frequency of 1010+/-10MHz to RF frequency of 11GHz. A predistorter can be designed for the M/W repeater operating in either IF or M/W frequency. In this paper IF predistorter operated in 1010MHz is designed and implemented because a M/W predistorter operated in 11GHz is difficult to implement. The IF predistorter can linearize RF modules in the repeater followed by IF stages. The performance test results show that the implemented analog predistorter improves ACPR of 10dB at the output power of 25dBm with the signal frequency of 10.805GHz.

Nonlinear Acceleration Controller Design for DACS Type Kill Vehicle (DACS형 직격요격비행체의 비선형 가속도 조종루프 설계)

  • Lee, Chang-Hun;Kim, Tae-Hun;Jun, Byung-Eul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.54-64
    • /
    • 2015
  • This paper deals with an acceleration controller design for a kill vehicle equipped with a divert and attitude control system (DACS). In the proposed method, the attitude control system (ACS) is used to produce the thrust command to nullify angle-of-attack. For the angle-of-attack control, a nonlinear angle-of-attack controller is proposed based on the feedback linearization methodology. Since the flight path angle is identical to the attitude angle under the condition of zero angle-of-attack, the divert control system (DCS) can directly produce the lateral acceleration which is demanded from the guidance loop. In the proposed method, we can minimize the aerodynamic uncertainty due to the propulsive force. Additionally, we can simplify the operation logic of DCS and ACS. In this paper, nonlinear simulations are performed to show the performance of the proposed method.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.

Reentry Guidance for Korean Space Plane Based on Reference Drag Following (한국형 우주비행기의 기준 항력 추종 기반 재진입 유도 기법)

  • Yoon, Da-In;Kim, Young-Won;Lee, Chang-Hun;Choi, Han-Lim;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.637-648
    • /
    • 2021
  • This paper aims to propose new reentry guidance for Korean Space plane (KSP). Similar to the Space Shuttle guidance concept, a reference drag profile is first determined to satisfy several flight path constraints and boundary conditions, and the proposed guidance commands are realized in a way to track the predetermined reference drag profile. To this end, the drag dynamics is examined. The investigation uncovers that the dynamics characteristics of the drag and the flight path angle are considerably different. Based on this fact, the proposed guidance commands are determined using the time-scale separation technique and the feedback linearization methodology. The key feature of the proposed guidance lies in its simple structure and a clear working mechanism. Therefore, the proposed method is simple to implement compared to existing methods. Numerical simulations are performed to investigate the performance of the proposed method.

Isogeometric Optimal Design of Kelvin Lattice Structures for Extremal Band Gaps (극대화된 밴드갭을 갖는 켈빈 격자 구조의 아이소-지오메트릭 최적 설계)

  • Choi, Myung-Jin;Oh, Myung-Hoon;Cho, Seonho;Koo, Bonyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • A band gap refers to a certain frequency range where the propagation of mechanical waves is prohibited. This work focuses on engineering three-dimensional Kelvin lattices having external band gaps at low audible frequency ranges using a gradient-based design optimization method. Elastic wave propagation in an infinite periodic lattice is investigated by employing the Bloch theorem. We model the ligaments using a shear-deformable beam model obtained by consistent linearization in a geometrically exact beam theory. For a given lattice topology, we enlarge band gap sizes by controlling the configuration of the beam neutral axis and cross-section thickness that are smoothly parameterized by B-spline basis functions within the isogeometric analysis framework.

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming (컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화)

  • Kwon, Hyuck-Hoon;Hong, Seong-Min;Kim, Gyeong-Hun;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

Partial Offloading System of Multi-branch Structures in Fog/Edge Computing Environment (FEC 환경에서 다중 분기구조의 부분 오프로딩 시스템)

  • Lee, YonSik;Ding, Wei;Nam, KwangWoo;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1551-1558
    • /
    • 2022
  • We propose a two-tier cooperative computing system comprised of a mobile device and an edge server for partial offloading of multi-branch structures in Fog/Edge Computing environments in this paper. The proposed system includes an algorithm for splitting up application service processing by using reconstructive linearization techniques for multi-branch structures, as well as an optimal collaboration algorithm based on partial offloading between mobile device and edge server. Furthermore, we formulate computation offloading and CNN layer scheduling as latency minimization problems and simulate the effectiveness of the proposed system. As a result of the experiment, the proposed algorithm is suitable for both DAG and chain topology, adapts well to different network conditions, and provides efficient task processing strategies and processing time when compared to local or edge-only executions. Furthermore, the proposed system can be used to conduct research on the optimization of the model for the optimal execution of application services on mobile devices and the efficient distribution of edge resource workloads.

Apply evolved grey-prediction scheme to structural building dynamic analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In recent years, an increasing number of experimental studies have shown that the practical application of mature active control systems requires consideration of robustness criteria in the design process, including the reduction of tracking errors, operational resistance to external disturbances, and measurement noise, as well as robustness and stability. Good uncertainty prediction is thus proposed to solve problems caused by poor parameter selection and to remove the effects of dynamic coupling between degrees of freedom (DOF) in nonlinear systems. To overcome the stability problem, this study develops an advanced adaptive predictive fuzzy controller, which not only solves the programming problem of determining system stability but also uses the law of linear matrix inequality (LMI) to modify the fuzzy problem. The following parameters are used to manipulate the fuzzy controller of the robotic system to improve its control performance. The simulations for system uncertainty in the controller design emphasized the use of acceleration feedback for practical reasons. The simulation results also show that the proposed H∞ controller has excellent performance and reliability, and the effectiveness of the LMI-based method is also recognized. Therefore, this dynamic control method is suitable for seismic protection of civil buildings. The objectives of this document are access to adequate, safe, and affordable housing and basic services, promotion of inclusive and sustainable urbanization, implementation of sustainable disaster-resilient construction, sustainable planning, and sustainable management of human settlements. Simulation results of linear and non-linear structures demonstrate the ability of this method to identify structures and their changes due to damage. Therefore, with the continuous development of artificial intelligence and fuzzy theory, it seems that this goal will be achieved in the near future.