• Title/Summary/Keyword: linearization

Search Result 965, Processing Time 0.034 seconds

Evaluation of Seismic Performance of Bearing Wall Structure with Coupling Beam (연결보가 있는 벽식 구조물의 내진성능 평가)

  • Lee, Young-Wook;Tao, Zou
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1049-1052
    • /
    • 2008
  • Coupling beams have been used in bearing wall system during last decades. Practically their sectional effects are fully considered in analysis stage to control lateral displacement because they have good contribution to the stiffness of bearing wall system. But the high resultant forces of coupling beam are not fully satisfied in design stage because coupling beams are restricted in sectional size. In this paper the performance of bearing wall system with coupling beam has been evaluated based on improved equivalent linearization procedure of FEMA 440. 15 storied building is selected for analysis. Variables for performance evaluation are natural period, degree of coupling and soil site. To evaluate performance, demand capacity spectrum is calculated based on KBC 2005. As a result, for the most of the cases the life safety limit of chord rotation of coupling beam is less than the performance point of system for soil site $S_D$. That means that the coupling beam can be severly damaged before the system reaches at performance point.

  • PDF

Evaluation of Structural Integrity and Leakage for a Gas Turbine Casing (가스터빈 케이싱의 구조안전성 및 누설 평가)

  • Seo, Hee Won;Ham, Dong Woo;Kim, Kyung Kook;Han, Jeong Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.347-354
    • /
    • 2016
  • Because typical gas turbine systems have frequent startup and shutdown operations, it is likely to cause cracks at the gas turbine casing and gas leakages at casing flanges due to thermal fatigue and embrittlement. Therefore, the evaluation of structural integrity and gas leakage at the gas turbine casings must be performed. In this paper, we have evaluated the structural integrity of the turbine casing and bolts under a normal operation in accordance with ASME B&PVC and evaluated the leakage at casing flanges by examination of contact pressure calculated using the finite element analysis. Finally, we propose a design flow including finite element modeling, the interpretation and evaluation methods for gas turbine casings. This may be utilized in the design and development of gas turbine casings.

Pavement condition assessment through jointly estimated road roughness and vehicle parameters

  • Shereena, O.A.;Rao, B.N.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.317-346
    • /
    • 2019
  • Performance assessment of pavements proves useful, in terms of handling the ride quality, controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of pavement requires the identification of pavement roughness along with vehicle parameters. The present study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer Euler-Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model considered in this study is a half car model, fitted with accelerometers at specified points. The identification of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator (MVE) make use of a linear state-space formulation including roughness, to overcome the linearization difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the optimization scheme to yield estimates of vehicle parameters. The issue of ill-posedness of the problem is dealt with by introducing a regularization equivalent term in the objective function, specifically where a large number of parameters are to be estimated. Effect of different objective functions is also studied. The outcome of this research is an overall measure of pavement condition.

A Semi-Implicit Integration for Rate-Dependent Plasticity with Nonlinear Kinematic Hardening (비선형 이동경화를 고려한 점소성 모델의 내연적 적분)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1562-1570
    • /
    • 2003
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. The radial return mapping is one of the most robust integration scheme currently used. Nonlinear kinematic hardening model of Armstrong-Fredrick type has recovery term and the direction of kinematic hardening increment is not parallel to that of plastic strain increment. In this case, The conventional radial return mapping method cannot be applied directly. In this investigation, we expanded the radial return mapping method to consider the nonlinear kinematic hardening model and implemented this integration scheme into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using Newton method and bisection method. Using dynamic yield condition derived from linearization of flow rule, the integration scheme for elastoplastic and viscoplastic constitutive model was unified. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

A Study of Optimal Operation Policy using Risk Evaluation Criteria(II) (for the Han River Reservoirs System) (위험도 평가기준을 적용한 저수지 최적운영방안 연구(II) (한강수계 저수지군을 중심으로))

  • Park, Myeong-Gi;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.51-64
    • /
    • 2002
  • In this study, the formulation of the developed mixed-integer programming model for a multi-reservoir system including hydro-electric power generation (park et al., 2001) has been improved for multiple reservoir system operation using risk evaluation criteria. Sequential linear programming(SLP) was applied for the linearization of the hydro-electric energy term in the model. In order to allocate monthly reservoir release reasonably the value of weight for hydro-electric energy was assigned by level of power generation hour. The improved model was applied to the five reservoirs system in the Han river. And could be confirmed the availibility of new formulation appling risk evaluation criteria.

A Study on Identification using Particle Swarm Optimization for 3-DOF Helicopter System (3-자유도 헬리콥터 시스템의 입자군집최적화 기법을 이용한 시스템 식별)

  • Lee, Ho-Woon;Kim, Tae-Woo;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • This study proposes the more improved mathematical model than conventional that for the 3-DOF Helicopter System in Quanser Inc., and checks the validity about the proposed model by performance comparison between the controller based on the conventional model and that based on the proposed model. Research process is next : First, analyze the dynamics for the 3-DOF helicopter system and establish the linear mathematical model. Second, check the eliminated nonlinear-elements in linearization process for establishing the linear mathematical model. And establish the improved mathematical model including the parameters corresponding to the eliminated nonlinear-elements. At that time, it is used for modeling that Particle Swarm Optimization algorithm the meta-heuristic global optimization method. Finally, design the controller based on the proposed model, and verify the validity of the proposed model by comparison about the experimental results between the designed controller and the controller based on the conventional model.

Design of Postdistortion Linearizer using Complex Envelope Transfer Characteristics of Power Amplifier (전력 증폭기의 복소 포락선 전달특성을 이용한 Postdistortion 방식의 선형화기의 설계)

  • 한재희;이덕희;남상욱;남상욱;임종식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1086-1093
    • /
    • 2001
  • A new linearization technique for RF high-power amplifiers(HPAs) using n-th order error signal generator (ESGn) is proposed. The n-th order ESG generates an error signal based on the complex envelope transfer characteristics of the HPA, which is combined at the output of the HPA. Therefore, the higher-order nonlinearlities are not affected by the ESG$\_$n/ and the stability of the linearized system is guaranteed due to the inherent open-loop configuration. Moreover, the output delay loss can be avoided, because the error signal is generated with the input signal of the HPA. The IMD(intermodulation distortion) improvement obtained applying the ESG$\_$7/ to 5 W class A HPA in cellular band demonstrates the feasibility of the proposed postdistortion system.

  • PDF

Positioning using ZigBee and Ultrasound

  • Park, Chan-Sik;Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Cha, En-Jong;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.217-222
    • /
    • 2006
  • To find a location, GPS has been wildly used. But, it is hard to use in indoor because of very weak signal level. To meet indoor requirements, there have been many studies applying wireless communication networks such as WLAN, UWB and ZigBee. Among these, ZigBee is widely adopted in many WSN applications because it has an advantage of low-power and low-cost. In ZigBee, the RSSI is used as range measurement for ad-hoc network. The RSSI are converted to ranges using the signal attenuation model and these ranges become inputs of positioning methods. The obtained position with RSSI has large error because of its poor accuracy. To overcome this problem, ultrasonic sensors are added in many researches. By measuring the arrival time difference of ZigBee and ultrasound as a range measurement, the precise position can be found. However, there are still many problems: scheduling of beacons to transmit signals in a correct order, addition and synchronization of beacons and low-rate positioning rate. At this paper, an efficient method to solve these problems is proposed. In the proposed method, a node transmits ZigBee and ultrasound signal simultaneously. And beacons find the range with the received signals and send it back to a node with ZigBee. The position is computed in a node with the received ranges. In addition, a new positioning algorithm to solve the risk of the divergence in the linearization method and the singularity problem in the Savarese method is presented. Both static and dynamic experimental results show 0.02m RMS errors with high output rate.

  • PDF

A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network (신경회로망을 이용한 공압구동기의 위치 추종제어에 관한 연구)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Pneumatic actuators are widely used in a variety of hazardous working environments. Any process that involves pneumatic actuation is also recognized as "eco-friendly". In most cases, applications of pneumatic actuators require only point-to-point control. In recent years, research efforts have been directed toward achieving precise position tracking control. In this study, a tracking position control method is proposed and experimentally evaluated for a linear positioning system. The positioning system is composed of a pneumatic actuator and a 3-port proportional valve. The proposed controller has an inner pressure control loop and an outer position control loop. A PID controller with feedback linearization is used in the pressure control loop to nullify the nonlinearity arising from the compressibility of the air. The position controller is also a PID controller augmented with the friction compensation by a neural network. Experimental results indicate that the proposed controller significantly improves the tracking performance.rformance.

  • PDF

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.