• Title/Summary/Keyword: linear water wave theory

Search Result 85, Processing Time 0.02 seconds

A STUDY ON THE HYDROELASTIC RESPONSE OF A PLATE UNDER IMPULSIVE PRESSURES DUE TO BREAKING WAVES

  • Park, Hang-Shoon;Lee, Dong-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 1996
  • In this paper, breaking waves are generated in a 2-D wave tank and simulated by using a higher-order boundary element method. A piston-type wavemaker is operated by signals composed of elementary waves. The phase of elementary waves is determined by the linear theory such that they are focused to a prescribed position. Calculated plunging waves coincide well with experiment. A steel box with different plate thicknesses is installed at a predetermined position in the tank. Measured impulsive pressures due to breaking waves are found to be 0.8-1.2$\rho$C2, where $\rho$ corresponds to water density and C to wave celerity. The transverse displacement of the plate is described in terms of modal eigenfunctions. The natural frequencies measured by impact tests in air for thin plate coincide with the computational and theoretical values. The radiationpotential due to plate vibration is derived and the radiation force is expressed in terms of hydroelastic added mass and damping forces. Comparison of natural frequencies of plate in water proves that hydroelastic added mass and damping are properly considered. The measured strain due to regular waves supports the calculated one, but there are apparent discrepancies between theory and experiment in the impulsive case.

THREE-DIMENSIONAL INFINITE ELEMENTS FOR WAVE FORCE EVALUATION ON OFFSHORE STRUCTURES (해양구조물의 파력산정을 위한 3-차원 무한요소)

  • Park, Woo-Sun;Yoon, Chung-Bang;Pyun, Chong-Kun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.8-14
    • /
    • 1991
  • The finite element technique incorporating infinite elements is applied to analyzing the general three dimensional wave-structure interaction problems within the limits of linear wave theory. The hydrodynamic farces are assumed to be inertially dominated, and viscous effects are neglected. In order to analyze the corresponding boundary value problems efficiently, two types of elements are developed. One is the infinite element for modeling the radiation condition at infinity, and the other is the fictitious bottom boundary element for the case of deep water. To validate those elements, numerical analyses are performed for several floating structures. Comparisons with the results from culler available solution methods show that the present method incorporating tile infinite and the fictitious bottom boundary elements gives good results.

  • PDF

Wave Scattering by a Semi-infinite Breakwater or a Breakwater Gap with Partially Reflective Front and Fully Reflective Back (부분반사 전면 및 완전반사 후면을 갖는 반무한 방파제 또는 방파제 개구부에 의한 파의 산란)

  • Suh, Kyung-Duck;Kim, Han-Na
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.183-193
    • /
    • 2007
  • Analytic solutions are derived for wave scattering by a semi-infinite breakwater or a breakwater gap with partially reflective front and fully reflective back. The water depth is constant and a regular wave train is normally incident to the breakwater. Wave scattering is studied based on the linear potential wave theory. The governing equation is transformed into ordinary differential equation by using the method of variation of parameters and coordinate transformation. Comparison with finite element numerical solution shows that the analytic solution obtained in this paper gives quite good results. Using the analytic solution, the tranquility of harbor entrance is investigated by changing the reflection coefficient at the breakwater.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.

On the Motion Characteristics of a Freely-Floating Sphere in a Water of Finite Depth (유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)의 운동특성(運動特性))

  • Hang-Shoon,Choi;Sung-Kyun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 1982
  • Herein the motion of a freely-floating sphere in a water of finite depth is analysed within the framework of a linear potential theory. A velocity potential describing fluid motion is generated by distributing pulsating sources and dipoles on the immersed surface of the sphere, without introducing an inner flow model. The potential becomes the solution of an integral equation of Fredholm's second type. In the light of the vertical axisymmetry of the flow, surface integrals reduce to line integrals, which are approximated by summation of the products of the integrand and the length of segments along the contour. Following this computational scheme the diffraction potential and the radiation potential are determined from the same algorithm of solving a set of simultaneous linear equations. Upon knowing values of the potentials hydrodynamic forces such as added mass, hydrodynamic damping and wave exciting forces are evaluated by the integrating pressure over the immersed surface of the sphere. It is found in the case of finite water depth that the hydrodynamic forces are much different from the corresponding ones in deep water. Accordingly motion response of the sphere in a water of finite depth displays a particular behavior both in a amplitude and phase.

  • PDF

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

Investigation of surface-piercing fixed structures with different shapes for Bragg reflection of water waves

  • Ding, Wei-Wei;Zou, Zao-Jian;Wu, Jing-Ping;Huang, Bai-Gang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.819-827
    • /
    • 2019
  • Bragg reflection of water waves by three kinds of surface-piercing fixed structures with rectangular, cosinoidal and triangular shapes is studied. Boundary element method is used to analyze the wave scattering by these structures based on the linear wave theory. Results of reflection and transmission coefficients are validated by comparing with those available in literature. These structures with proper configurations are proved to be effective in attenuating waves by using Bragg reflection, and the triangular structures are found to be the best choices among the structures with same width and same area. Systematic calculations are then carried out for the triangular structures by varying the number, the draft, the width, the gap and the combination of width and gap of the structures to analyze their influences on the characteristics of Bragg reflection. The results are of reference values for design of the structures to attenuate waves based on the Bragg reflection.

Wave Force Analysis of the Three Vertical Cylinders in Water Waves

  • Kim, Nam-Hyeong;Cao, Tan Ngoc Than
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.543-552
    • /
    • 2008
  • The diffraction of waves by three bottom fixed vertical circular cylinders is investigated by using the boundary element method. This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential theory. The numerical analysis by the boundary element method is based on Green's second theorem and introduced to an integral equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such are the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for the design of various offshore structures to be constructed in the future.

On the Surge Motion of a Freely-Floating Sphere in a Plane Progressive Wave (규칙파(規則波)에 놓인 구(球)의 수평운동(水平運動)에 대(對)한 해석(解析))

  • Chan-Wook,Park;Hang-Shoon,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 1981
  • The surge motion of a freely-floating sphere in a regular wave is studied within the framework of a linear potential theory. The fluid is assumed to be perfect and only the steady-state harmonic motion in a water of infinite depth is considered. A velocity potential describing the fluid motion is decomposed into three parts; the incident wave potential, the diffraction potential and the radiation potential. In this paper the diffraction potential and the radiation potential are analysed by using multipole expansion method. Upon calculating pressures over the immersed surface of the sphere, the hydrodynamic forces are evaluated in terms of Froude-Krylov, diffraction, added mass and damping forces as functions of the frequency of the incident wave. Finally the frequency dependence of two pertinent parameters, the amplitude ratio and the phase lag between the motion of the sphere and that of the incident wave is derived from the equation of motion. As for numerical results the general tendency of the present calculation shows good agreement with Kim's work who also treated this problem utilizing the Green's function method.

  • PDF

A Study on Nonlinear Water-Wave Profile (비선형 해양파의 파형 연구에 관하여)

  • JANG TAEK-SOO;WANG SUNG-HYUNH;KWON SUN-HONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.179-182
    • /
    • 2004
  • This paper deals with a new mathematical formulation of nonlinear wave profile based on Banach fixed point theorem. As application of the formulation and its solution procedure, some numerical solutions was presented in this paper and nonlinear equation was derived. Also we introduce a new operator for iteration and getting solution. A numerical study was accomplished with Stokes' first-order solution and iteration scheme, and then we can know the nonlinear characteristic of Stokes' high-order solution. That is, using only Stokes' first-oder(linear) velocity potential and an initial guess of wave profile, it is possible to realize the corresponding high-oder Stokian wave profile with tile new numerical scheme which is the method of iteration. We proved the mathematical convergence of tile proposed scheme. The nonlinear strategy of iterations has very fast convergence rate, that is, only about 6-10 iterations arc required to obtain a numerically converged solution.

  • PDF