• 제목/요약/키워드: linear static structural analysis

검색결과 253건 처리시간 0.022초

기계장비의 구조 특성 예측 시뮬레이터 (Simulator of Accuracy Prediction for Developing Machine Structures)

  • 이찬홍;하태호;이재학;김양진
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.265-274
    • /
    • 2011
  • This paper presents current state of the prediction simulator of structural characteristics of machinery equipment accuracy. Developed accuracy prediction simulator proceeds and estimates the structural analysis between the designer and simulator through the internet for convenience of designer. 3D CAD model which is input to the accuracy prediction simulator would simplified by the process of removing the small hole, fillet and chamfer. And the structural surface joints would be presented as the spring elements and damping elements for the structural analysis. The structural analysis of machinery equipment joints, containing rotary motion unit, linear motion unit, mounting device and bolted joint, are presented using Finite Element Method and their experiment. Finally, a general method is presented to tune the static stiffness at a rotation joint considering the whole machinery equipment system by interactive use of Finite Element Method and static load experiment.

Static and free vibration analysis of shallow sagging inclined cables

  • Li, Zhi-Jiang;Li, Peng;He, Zeng;Cao, Ping
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.145-157
    • /
    • 2013
  • Based on link-model, we conducted a static analysis and computation of a three-span suspended cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. Using the link and beam model based on finite element method, we analyzed the vibration modal of three-span suspended cable structure, and compared with the results obtained from ANSYS using link and beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of inclined cables.

선형등가하중을 이용한 비선형 거동을 하는 트러스 구조물의 최적설계 (Structural Optimization of Truss with Non-Linear Response Using Equivalent Linear Loads)

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.467-474
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

이중골조에 대한 비선형 약산법들의 응답특성 (The Response Characteristics of Approximate Nonlinear Methods with RC Dual System)

  • 남영우;강병두;전대한;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.71-78
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear tim history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to RC dual system and various earthquakes.

  • PDF

등가정하중법을 이용한 텔레비전 포장재의 구조최적설계 (Optimization of the Television Packing System Using Equivalent Static Loads)

  • 이영명;정의진;박경진;한인식;김태경
    • 대한기계학회논문집A
    • /
    • 제39권3호
    • /
    • pp.311-318
    • /
    • 2015
  • 텔레비전의 운송 중 발생 가능한 낙하상황을 설정하고, 낙하충격으로부터 텔레비전을 보호할 수 있는 텔레비전 포장재의 최적설계를 수행하였다. 텔레비전 포장재의 최적설계는 등가정하중법을 이용하여 비선형동적응답 구조최적설계를 수행하였으며, 포장재의 최적설계 과정을 본 연구에서 제안하였다. 개념설계 단계에서 등가정하중법을 적용한 위상최적설계를 수행하였으며 상세설계 단계에서 가상모델을 사용한 응력등가정하중법을 이용하여 형상최적설계를 수행하였다. 응력등가정하중은 비선형동적응답 해석의 변위장뿐만 아니라 응력반응장과 동일한 선형해석반응장을 유발하는 선형정적하중이다. 즉, 비선형동적응답 해석에서의 응력반응장을 구조최적설계에서 제한조건을 설정할 수 있는 것이다. 실제 예제를 통해 등가정하중법을 적용한 최적설계 과정의 유용성을 검증하였다. 텔레비전 포장재 낙하 테스트는 LS-DYNA 를 사용하였으며 구조최적설계는 NASTRAN 을 사용하였다.

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

지속가능한 초고층 건물을 위한 80층 RC 플랫 플레이트 건물의 연쇄붕괴 저항성능 평가 (An Evaluation for Progressive Collapse Resisting Capacity of a 80F RC Flat Plate for Sustainable Super Tall Building)

  • 서대원;김해진;신성우
    • KIEAE Journal
    • /
    • 제10권5호
    • /
    • pp.151-157
    • /
    • 2010
  • This study is connected with evaluation of the progressive collapse resisting capacity for sustainable RC super tall building design. As the progressive collapse is not considered in current design codes in Korea, differences between linear static and dynamic analysis based on the GSA guidelines was analyzed for better evaluation, and the analysis model of flat plate system was determined. Finally, the progressive collapse resisting capacity was evaluated for structural system of super tall building. According to this study, the results by linear dynamic analysis were underestimated than the results by linear static analysis. Thus, the dynamic coefficient value of 2 provides conservative approach. The Effective Beam Width's model, currently used in field, is useful for the analysis about lateral force, but this model does not consider the effect of load redistribution by the slab. Hence, finite element analysis considering slab element will be needed for progressive collapse resisting capacity of the flat plate system. Finally, analysis model of 80-story building designed based on KBC(Korea Building Code) shows the weakness against progressive collapse because the DCR value is over 2. Thus, the countermeasure for alternative loading path such as installment of spandrel beam and reinforcements around slab is required to prevent the progressive collapse.

3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석 (Static Non-linear Finite Element Analysis of Spatial Cable Networks)

  • 김문영;김남일;안상섭
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.179-190
    • /
    • 1998
  • 두개의 케이블요소를 이용한 3차원 케이블망의 정적 비선형 유한요소해석기법을 제시한다. 먼저, 공간 트러스요소와 탄성현수선 케이블요소(elastic catenary cable element)의 접선강도행렬과 질량행렬을 유도하는 과정을 간략히 요약한다. 지점 변위를 일으키고 자중을 받는 케이블망의 초기평형 상태를 결정하기 위하여, Newton-Raphson 반복법에 근거한 하중증분법과 현수케이블요소를 적용하는 경우에 viscous damping을 고려한 dynamic relaxation법을 제시한다. 또한 초기의 정적평형상태를 기준으로 추가하중에 대한 케이블망의 정적 비선형해석을 수행한다. 지점변위와 외력을 받는 케이블 구조에 대하여 비선형해석을 수행하고, 해석결과들을 기존의 문헌의 결과와 비교, 검토하므로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다.

  • PDF

Evaluating the accuracy of mass scaling method in non-linear quasi-static finite element analysis of RC structures

  • A. Yeganeh-Salman;M. Lezgy-Nazargah
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.485-500
    • /
    • 2023
  • The non-linear static analysis of reinforced concrete (RC) structures using the three-dimensional (3D) finite element method is a time-consuming and challenging task. Moreover, this type of analysis encounters numerical problems such as the lack of convergence of results in the stages of growth and propagation of cracks in the structure. The time integration analysis along with the mass scaling (MS) technique is usually used to overcome these limitations. Despite the use of this method in the 3D finite element analysis of RC structures, a comprehensive study has not been conducted so far to assess the effects of the MS method on the accuracy of results. This study aims to evaluate the accuracy of the MS method in the non-linear quasi-static finite element analysis of RC structures. To this aim, different types of RC structures were simulated using the finite element approach based on the implicit time integration method and the mass scaling technique. The influences of effective parameters of the MS method (i.e., the allowable values of increase in the mass of the RC structure, the relationship between the duration of the applied load and fundamental vibration period of the RC structure, and the pattern of applied loads) on the accuracy of the simulated results were investigated. The accuracy of numerical simulation results has been evaluated through comparison with existing experimental data. The results of this study show that the achievement of accurate structural responses in the implicit time integration analyses using the MS method involves the appropriate selection of the effective parameters of the MS method.

등가하중법을 이용한 접합날개의 기하 비선형 응답 구조최적설계 (Nonlinear Response Structural Optimization of a Joined-Wing Using Equivalent Loads)

  • 김용일;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.321-326
    • /
    • 2007
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing arc joined together in the joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performances and reduction of the structural weight. The structural behavior of the joined-wing has a high geometric nonlinearity according to the external loads. The gust loads are the most critical loading conditions in the structural design of the joined-wing. The nonlinear behavior should be considered in the optimization of the joined-wing. It is well known that conventional nonlinear response optimization is extremely expensive: therefore, the conventional method is almost impossible to use in large scale structures such as the joined-wing. In this research, geometric nonlinear response structural optimization is carried out using equivalent loads. Equivalent loads are the load sets which generate the same response field in linear analysis as that from nonlinear analysis. In the equivalent loads method, the external loads are transformed to the equivalent loads (EL) for linear static analysis, and linear response optimization is carried out based on the EL.

  • PDF