DOI QR코드

DOI QR Code

Evaluating the accuracy of mass scaling method in non-linear quasi-static finite element analysis of RC structures

  • A. Yeganeh-Salman (Faculty of Engineering, Department of Civil Engineering, Hakim Sabzevari University) ;
  • M. Lezgy-Nazargah (Faculty of Engineering, Department of Civil Engineering, Hakim Sabzevari University)
  • Received : 2022.05.24
  • Accepted : 2023.01.26
  • Published : 2023.02.25

Abstract

The non-linear static analysis of reinforced concrete (RC) structures using the three-dimensional (3D) finite element method is a time-consuming and challenging task. Moreover, this type of analysis encounters numerical problems such as the lack of convergence of results in the stages of growth and propagation of cracks in the structure. The time integration analysis along with the mass scaling (MS) technique is usually used to overcome these limitations. Despite the use of this method in the 3D finite element analysis of RC structures, a comprehensive study has not been conducted so far to assess the effects of the MS method on the accuracy of results. This study aims to evaluate the accuracy of the MS method in the non-linear quasi-static finite element analysis of RC structures. To this aim, different types of RC structures were simulated using the finite element approach based on the implicit time integration method and the mass scaling technique. The influences of effective parameters of the MS method (i.e., the allowable values of increase in the mass of the RC structure, the relationship between the duration of the applied load and fundamental vibration period of the RC structure, and the pattern of applied loads) on the accuracy of the simulated results were investigated. The accuracy of numerical simulation results has been evaluated through comparison with existing experimental data. The results of this study show that the achievement of accurate structural responses in the implicit time integration analyses using the MS method involves the appropriate selection of the effective parameters of the MS method.

Keywords

References

  1. Abuodeh, O.R., Hawileh, R.A. and Abdalla, J.A. (2021), "Finite element modelling of aluminum alloy plated reinforced concrete beams", Comput. Concrete, 27(6), 585-596. https://doi.org/10.12989/cac.2021.27.6.585.
  2. Ahmed, A. (2014), "Modeling of a reinforced concrete beam subjected to impact vibration using ABAQUS", Int. J. Civil Struct. Eng., 4(3), 227-236. https://doi.org/10.6088/ijcser.201304010023.
  3. Arani, K.S., Zandi, Y., Pham, B.T., Muazu, M.A., Katebi, J., Mohammadhassani, M., Khalafi, S., Edy Tonnizam, M., Wakil, K. and Khorami, M. (2019), "Computational optimized finite element modeling of mechanical interaction of concrete with fiber reinforced polymer", Comput. Concrete, 23(1), 61-68. https://doi.org/10.12989/cac.2019.23.1.061.
  4. Chopra, A.K. (2012), Dynamics of Structures, Fourth Edition, Prentice Hall, New York.
  5. Cocchetti, G., Pagani, M. and Perego, U. (2012), "Selective mass scaling and critical time-step estimate for explicit dynamics analyses with solid-shell elements", Comput. Struct., 127, 39-52. https://doi.org/10.1016/j.compstruc.2012.10.021.
  6. Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solids and Structures, John Wiley & Sons, Chichester.
  7. Demirtas, G., Caglar, N. and Sumer, Y. (2022), "Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads", Struct. Eng. Mech., 82(1), 81-92. https://doi.org/10.12989/sem.2022.82.1.081.
  8. Dong, J., Ma, H., Zou, C., Liu, Y. and Huang, C. (2019), "Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns", Struct. Eng. Mech., 72(1), 43-60. https://doi.org/10.12989/sem.2019.72.1.043.
  9. Gaston, J.R., Siess, C.P. and Newmark, N.M. (1972), "A layered, finite element non-linear analysis of reinforced concrete plates and shells", Civil Engineering Studies, University of Illinois, Urbana.
  10. Glodkowska, W. and Ruchwa, M. (2010), "Static analysis of reinforced concrete beams strengthened with CFRP composites", Arch. Civil Eng., 56(2), 111-122. https://doi.org/10.2478/v.10169-010-0006-9.
  11. Habibi, O., Khaloo, A. and Abdoos, H. (2021), "Seismic behavior comparison of RC shear walls strengthened using FRP composites and steel elements", Sci. Iran, 28(3), 1167-1181. https://doi.org/10.24200/SCI.2020.55328.4170.
  12. Hibbitt, Kalsson, Sorensen (2000), ABAQUS Theory Manual, Providence, USA.
  13. Hilber, H.M., Hughes, T.J.R. and Taylor R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306.
  14. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and growth in concrete by means of fracture mechanics and finite element", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  15. Hognestad, E. (1951), "A study of combined bending and axial load in reinforced concrete members", Bulletin Series, University of Illinois at Urbana Champaign.
  16. Hughes, T.J.R. (1987), Finite Element Method-Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.
  17. Jiang, H., Wang, X. and He, S. (2012), "Numerical simulation of impact tests on reinforced concrete beams", Mater. Des., 39, 111-120. https://doi.org/10.1016/j.matdes.2012.02.018.
  18. Jofriet, J.C. and McNeice, G.M. (1971), "Finite element analysis of RC slabs", J Struct. Div., ASCE, 97(3), 785-806. https://doi.org/10.1061/JSDEAG.0002845.
  19. Labibzadeh, M. and Hamidi, R. (2019), "A comparison between shear capacities of two composite shear walls: DSCSWs and CSPSWs", Struct. Eng. Int., 29, 276-281. https://doi.org/10.1080/10168664.2018.1544473.
  20. Lezgy-Nazargah, M. (2018), "Efficient materially nonlinear finite element model for reinforced concrete beams based on layered global-local kinematics", Acta Mechanica, 229(3), 1429-1449. https://doi.org/10.1007/s00707-017-2081-3.
  21. Lezgy-Nazargah, M., Dezhangah, M. and Sepehrinia, M. (2018), "The effects of different FRP/concrete bond-slip laws on the 3D FE modeling of retrofitted RC beams-A sensitivity analysis", Steel Compos. Struct., 26(3), 347-360. https://doi.org/10.12989/scs.2018.26.3.347.
  22. Liu, B. and Bai, G.L. (2019), "Finite element modeling of bondslip performance of section steel reinforced concrete", Comput. Concrete, 24(3), 237-247. https://doi.org/10.12989/cac.2019.24.3.237.
  23. Liu, Q. and Jiangping, M.A. (2021), "Finite element simulation for investigation on thermal post-buckling of geometrically imperfect GOP-reinforced beam", Adv. Concrete Constr., 12(2), 135-143. https://doi.org/10.12989/acc.2021.12.2.135.
  24. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989) "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  25. Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concrete Constr., 2(2), 91-108. https://doi.org/10.12989/acc.2014.2.2.091.
  26. Obaidat, Y.T., Heyden, S. and Dahlblom, O. (2010), "The effect of CFRP and CFRP/Concrete interface models when modelling retrofitted RC beams with FEM", Compos. Struct., 92(6), 1391-1398. https://doi.org/10.1016/j.compstruct.2009.11.008.
  27. Olovsson, L., Simonsson, K. and Unosson, M. (2005), "Selective mass scaling for explicit finite element analyses", Int. J. Numer. Meth. Eng., 63(10), 1436-1445. https://doi.org/10.1002/nme.1293.
  28. Oner, E., Sabano, B.S., Yaylaci, E.C., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 102(2), e202100287. https://doi.org/10.1002/zamm.202100287.
  29. Orakcal, K. and Wallace, J.W. (2004), "Modeling of slender reinforced concrete walls", Proceedings of the 13th World Conference on Earthquake Engineering, August.
  30. Rahimi, H. and Hutchinson, A. (2001), "Concrete beams strengthened with externally bonded FRP plates", J. Compos. Constr., 5(1), 44-56. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44).
  31. Ramm, E. (1981), Strategies for Tracing the Nonlinear Response Near Limit Points, in: Nonlinear Finite Element Analysis in Structural Mechanics, Springer Berlin Heidelberg, Berlin, Heidelberg.
  32. Rots, J.G. and Invernizzi, S. (2004) "Regularized sequentially linear saw-tooth softening model", Int. J. Numer. Anal. Meth. Geomech., 28, 821-856. https://doi.org/10.1002/nag.371.
  33. Senthil, K., Gupta, A. and Singh, S.P. (2018), "Computation of stress-deformation of deep beam with openings using finite element method", Adv. Concrete Constr., 6(3), 245-268. https://doi.org/10.12989/acc.2018.6.3.245.
  34. Sinaei, H., Shariati, M., Hosein Abna, A., Aghaei, M. and Shariati, A. (2012), "Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS", Sci. Res. Essays, 7(21), 2002-2009. https://doi.org/10.5897/SRE11.1393.
  35. Soliman, K.Z., Arafa, A.I. and Elrakib, T.M. (2013), "Review of design codes of concrete encased steel short columns under axial compression", HBRC J., 9(2), 134-143. https://doi.org/10.1016/j.hbrcj.2013.02.002.
  36. Stoner, J.G. and Polak, M.A. (2020), "Finite element modelling of GFRP reinforced concrete beams", Comput. Concrete, 25(4), 369-382. https://doi.org/10.12989/cac.2020.25.4.369.
  37. Suidan, M.T. and Schnobrich, W.C. (1973), "Finite Element Analysis of Reinforced Concrete", J. Struct. Div., 99(10), 2109-2122. https://doi.org/10.1061/JSDEAG.0003623
  38. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  39. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26 .2.107.
  40. Yaylaci, M., Abanoz, M., Yaylaci, E.U., O lmez, H., Sekban, D.M. and Birinci, A. (2022), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92, 1953-197. https://doi.org/10.1007/s00419-022-02159-5.
  41. Yaylaci, M., Adiyaman, G., O ner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  42. Yaylaci, M., Adiyaman, G., O ner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.