• Title/Summary/Keyword: linear static analysis

Search Result 581, Processing Time 0.161 seconds

Linear Static Structural Analysis of the Disposal Container for Spent Pressurized Water Reactor and Canadian Deuterium and Uranium Reactor Nuclear Fuels (차압경수로 및 중수로 폐기물 처분장치에 대한 선형정적 구조해석)

  • 권영주;강신욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.515-523
    • /
    • 2001
  • In this paper results of a linear structural analysis for design and dimensioning of disposal containers for spent pressurized water reactor nuclear fuel and spent Canadian deuterium and uranium reactor nuclear fuel are presented. The container structure studied here is a solid structure with a cast insert and a corrosion resistant outer shell, which is designed for the spent nuclear fuel disposal in a deep repository. An evenly distributed load of hydrostatic pressure from the groundwater and large swelling pressure from the bentonite buffer are applied on the container. Hence, the container must be designed to endure these large pressure loads. In this study, the array type of inner baskets and thicknesses of outer shell and lid/bottom are attempted to be determined through a linear static structural analysis.

  • PDF

Analysis of Magnetic Flux Path and Static Thrust Force of the Double-Side Linear Pulse Motor (양측식 리니어 펄스 모터의 자로와 정특성 해석)

  • Kim, Seong-Jong;Lee, Eun-Ung;Kim, Seong-Heon;Kim, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.493-498
    • /
    • 2002
  • Double-side linear pulse motor(DSLPM) has more advantages than single-side linear pulse motor because noise and vibration can be considerably decreased by countervailing the normal forces, which is generated between two stators and mover. However, DSLPM has more complicated magnetic flux path and layout of stator pole toot/mover tooth rather than single-side linear pulse motor In this paper, DSLPM is designed and fabricated by considering the air gap magnetic density, shape of tooth and slot. In order to verify the characteristics of DSLPM, the air gap magnetic flux density is analyzed by 2D FEM and the magnetic flux path is analyzed by 3D FEM. Also the static thrust forces is obtained with the analyzed results.

Case Study of Seismic Evaluation of Low-Rise Masonry Buildings (저층 조적건물의 내진성능평가 사례 연구)

  • Eom, Tae Sung;Kim, Chan Ho;Lee, Seung Jae;Kim, Jin Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, the seismic performance of a two-story unreinforced masonry (URM) building was assessed following the linear and nonlinear static procedures specified in the seismic evaluation guideline of existing buildings. First, the provisions to assess failure modes and shear strengths of URM walls and wall piers were reviewed. Then, a two-story URM building was assessed by the linear static procedure using m-factors. The results showed that the walls and wall piers with aspect ratios he // (i.e., effective height-to-length ratio) > 1.5 were unsafe due to rocking or toe crushing, whereas the walls with he // ≤ 1.5 and governed by bed-joint sliding mainly were safe. Axial stresses and shear forces acted upon individual masonry walls, and wall piers differed depending on whether the openings were modeled. The masonry building was reevaluated according to the nonlinear static procedure for a more refined assessment. Based on the linear and nonlinear assessment results, considerations of seismic evaluation for low-rise masonry buildings were given with a focus on the effects of openings.

Analysis for the Effect of the Misalignment of the Power Line from the Displacement Caused by the Ship Motion of the Main Propulsion System (선체운동에 의한 주추진계의 변위가 동력축의 축 어긋남에 미치는 영향 분석)

  • Han, Hyung-Suk;Lee, Kyung-Hyun;Cho, Heung-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Since the engine and reduction gear in a naval vessel are usually supported by the mounting system separately, the misalignment between the input shaft of the reduction gear and the output shaft of the engine should occur caused by ship motion. In this study, this misalignment is estimated from the linear static analysis assuming that the phase of movements of the engine and reduction gear at low frequency range is same and the dynamic effect is not affect to them. Through comparing the relative displacement of the engine and reduction gear calculated from linear static analysis to that from dynamic analysis as well as experiment, the assumption in this study could be verified.

A Study on the Control Law Design and Analysis Process (비행제어법칙 설계 및 해석 절차에 관한 연구)

  • Hwang Byung-moon;Cho In-jae;Kim Chong-sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.913-919
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modem version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. Standard CLDA (Control Law Design and Analysis) process is provided that reduce the development period of the flight control system. In addition, if this process is employed in developing flight control laws, it reduces the trial and error development and verification of control laws. This paper details the design process of developing a flight control law for the RSS aircraft, utilizing military specifications, linear and nonlinea, analysis using XMATH and ATLAS(Aircraft, Tim Linear and Simulation), handling quality tests using the HQS (Handling Quality Simulator), and real flight test results to verify aircraft dynamic flight responses.

Study for Accessment of Structural Stability of SAS Reactor (SAS 반응기의 구조 안전성 평가 연구)

  • 이은우;정의동;김윤춘;김종배
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.43-49
    • /
    • 1995
  • Sasol Advanced Synthol Reactor was divided into two chambers by grid plate perforated with diffuser holes. The reactor has high stress level beacuse of membrane stress due to internal pressure, thermal stress due to temperature difference and local stress due to structural discontinuity at the juncture of grid plate and shell. Moreover, geometric nonlinear behaviors may appear in the grid plate because of pressure difference between two chambers. In order to survey the stress level and geometric nonlinear behaviors around grid plate, heat transfer analysis, linear static analysis and geometric nonlinear analysis were performed using NISA II developed by EMRC. This paper demonstrates the result of accessment for linear static and geometric nonlinear analysis under various load combinations.

  • PDF

Ratcheting analysis of joined conical cylindrical shells

  • Singh, Jaskaran;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.913-929
    • /
    • 2015
  • The ratcheting and strain cyclic behaviour of joined conical-cylindrical shells under uniaxial strain controlled, uniaxial and multiaxial stress controlled cyclic loading are investigated in the paper. The elasto-plastic deformation of the structure is simulated using Chaboche non-linear kinematic hardening model in finite element package ANSYS 13.0. The stress-strain response near the joint of conical and cylindrical shell portions is discussed in detail. The effects of strain amplitude, mean stress, stress amplitude and temperature on ratcheting are investigated. Under strain symmetric cycling, the stress amplitude increases with the increase in imposed strain amplitude. Under imposed uniaxial/multiaxial stress cycling, ratcheting strain increases with the increasing mean/amplitude values of stress and temperature. The abrupt change in geometry at the joint results in local plastic deformation inducing large strain variations in the vicinity of the joint. The forcing frequency corresponding to peak axial ratcheting strain amplitude is significantly smaller than the frequency of first linear elastic axial vibration mode. The strains predicted from quasi static analysis are significantly smaller as compared to the peak strains from dynamic analysis.

Static Non-linear Finite Element Analysis of Spatial Cable Networks (3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석)

  • 김문영;김남일;안상섭
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.179-190
    • /
    • 1998
  • A geometrically nonlinear finite element formulation of spatial cable networks is presented using two cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static nonlinear behaviors of cable nets.

  • PDF

Linear Pulse Motor Characteristics Analysis using Non-linear Simulation (비선형 시뮬레이션에 의한 리니어 펄스모터의 특성해석)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.584-587
    • /
    • 1992
  • Because linear motor directly drives linear motion, it does not need conversion equipment such as belt and gear. Especially linear pulse motor provide more precise positioning and large force of linear pulse motors. As current manufacture technic of linear pulse motor is much to be desired at home. This motor lay out to make use of computer aided design program, In this paper the experimental motor is 2-phases 4-poles hybrid pulse motor which has teeth per pole Simulation program is divided its function into 4 parts - air gap permeance analysis, permanent magnet & non-linear core operating point determine, winding configuration, leakage flux analysis. It is possible to make motor static and magnetic characteristics for this simulation program. Also, by varying input parameters of the program, experimental motor is to be compared to motor characteristics.

  • PDF

Static vulnerability of existing R.C. buildings in Italy: a case study

  • Maria, Polese;Gerardo M., Verderame;Gaetano, Manfredi
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.599-620
    • /
    • 2011
  • The investigation on possible causes of failures related to documented collapses is a complicated issue, primarily due to the scarcity and inadequacy of information available. Although several studies have tried to understand which are the inherent structural deficiencies or circumstances associated to failure of the main structural elements in a reinforced concrete frame, to the authors knowledge a uniform approach for the evaluation building static vulnerability, does not exist yet. This paper investigates, by means of a detailed case study, the potential failure mechanisms of an existing reinforced concrete building. The linear elastic analysis for the three-dimensional building model gives an insight on the working conditions of the structural elements, demonstrating the relevance of a number of structural faults that could sensibly lower the structure's safety margin. Next, the building's bearing capacity is studied by means of parametric nonlinear analysis performed at the element's level. It is seen that, depending on material properties, concrete strength and steel yield stress, the failure hierarchy could be dominated by either brittle or ductile mechanisms.