• Title/Summary/Keyword: linear spring condition

Search Result 46, Processing Time 0.019 seconds

ANALYSIS OF THE OPTIMIZED H TYPE GRID SPRING BY A CHARACTERIZATION TEST AND THE FINITE ELEMENT METHOD UNDER THE IN-GRID BOUNDARY CONDITION

  • Yoon Kyung-Ho;Lee Kang-Hee;Kang Heung-Seok;Song Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.375-382
    • /
    • 2006
  • Characterization tests (load vs. displacement curve) are conducted for the springs of Zirconium alloy spacer grids for an advanced LWR fuel assembly. Twofold testing is employed: strap-based and assembly-based tests. The assembly-based test satisfies the in situ boundary conditions of the spring within the grid assembly. The aim of the characterization test via the aforementioned two methods is to establish an appropriate assembly-based test method that fulfills the actual boundary conditions. A characterization test under the spacer grid assembly boundary condition is also conducted to investigate the actual behavior of the spring in the core. The stiffness of the characteristic curve is smaller than that of the strap-wised boundary condition. This phenomenon may cause the strap slit condition. A spacer grid consists of horizontal and vertical straps. The strap slit positions are differentiated from each other. They affords examination of the variation of the external load distribution in the grid spring. Localized legions of high stress and their values are analyzed, as they may be affected by the spring shape. Through a comparison of the results of the test and FE analysis, it is concluded that the present assembly-based analysis model and procedure are reasonably well conducted and can be used for spring characterization in the core. Guidelines for improving the mechanical integrity of the spring are also discussed.

A Study on the Evaluation Parameter of Sliding/Impact Wear in a High Temperature and Pressure Water Condition (고온고압 미끄럼/충격조건에서 마멸평가 변수 연구)

  • Lee Young-Ho;Song Ju-Sun;Kim Hyung-Kyu;Jung Youn-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.37-40
    • /
    • 2004
  • The impact/sliding wear tests have been performed in high temperature high pressure water in order to evaluate the effect of spring shape on the wear behavior of a spring supported tube for nuclear fuel fretting study. The results indicate that the tube wear volume and the size of the wear scar are closely related to each spring shape. From the analysis of the wear scar, it is possible to extract the real worn area (Aw) from the size of the wear scar (At). In addition, we found that the wear volume has a linear relation with the real worm area rather than the size of wear scar and this was only determined by each spring shape in the high temperature and pressure water condition. From the above results, it is possible to evaluate the wear resistant spring using the correlation between the variation of the real worn area and the wear behavior at each spring.

  • PDF

SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION I: POSITIVENESS AND CONTRACTIVENESS

  • Choi, Sung-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.27-47
    • /
    • 2012
  • It has become apparent from the recent work by Choi et al. [3] on the nonlinear beam deflection problem, that analysis of the integral operator $\mathcal{K}$ arising from the beam deflection equation on linear elastic foundation is important. Motivated by this observation, we perform investigations on the eigenstructure of the linear integral operator $\mathcal{K}_l$ which is a restriction of $\mathcal{K}$ on the finite interval [$-l,l$]. We derive a linear fourth-order boundary value problem which is a necessary and sufficient condition for being an eigenfunction of $\mathcal{K}_l$. Using this equivalent condition, we show that all the nontrivial eigenvalues of $\mathcal{K}l$ are in the interval (0, 1/$k$), where $k$ is the spring constant of the given elastic foundation. This implies that, as a linear operator from $L^2[-l,l]$ to $L^2[-l,l]$, $\mathcal{K}_l$ is positive and contractive in dimension-free context.

Finite Element Analysis and Optimal Design of Automobile Clutch Diaphragm Spring (자동차 클러치 다이어프램 스프링의 유한요소해석 및 최적설계)

  • Lee, Chun-Yeol;Chae, Yeong-Seok;Gwon, Jae-Do;Nam, Uk-Hui;Kim, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1616-1623
    • /
    • 2000
  • A diaphragm spring is an important component of a clutch assembly, characteristics of which depends largely on that of a diaphragm spring. A diaphragm spring is subject to high stress concentration in driving condition, which frequently causes cracks and fracture around finger area. In this paper, behavior of a diaphragm spring is analysed by finite element method to calculate sensitivity of design parameters, which is used to perform optimal design of diaphragm spring shape. As an object function, hoop stresses are taken and minimized to improve durability. Characteristics of the diaphragm is used as equality constraint to maintain the original design purpose and sequential linear programming(SLP) is utilized as an optimization tool. With optimized design, it is verified that concentrated stress is decreased maintaining release load characteristic.

Validity of the Multiple Scale Solution for a Resonance Response of a Bar with a Nonlinear Boundary Condition (비선형 경계조건을 가진 봉의 공진응답을 위한 다중시간해의 타당성)

  • 이원경;여명환;배상수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.275-281
    • /
    • 1996
  • In order to examine the validity of an asymptotic solution obtained from the method of multiple scales, we investigate a third-order subharmonic resonance response of a bar constrained by a nonlinear spring to a harmonic excitation. The motion of the bar is governed by a linear partial differential equation with a nonlinear boundary condition. The nonlinear boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution.

  • PDF

A study on the magnetic suspension system for commercial vehicle (상용차용 마그네틱 현가기구 개발에 대한 연구)

  • Ju, Hyung-Jun;Kim, Dae-Sung;Lee, Bong-Hyun;Kim, Jung-In;Kim, Chan-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.409-414
    • /
    • 2011
  • The drivers of commercial vehicle easily feel tired because of a long time driving and bad road condition. Therefore it is very important to make the driver seat comfortable. This paper introduces the suspension system of driver's seat using magnetic force. The combination of linear spring and magnetic force can make nonlinear spring which has optimal stiffness for minimal vibration transmissibility. The vibrations of driver's seat floor are measured in various road condition. And the numerical simulations and experiments are performed to define the optimal parameter of magnetic suspension system.

  • PDF

Design and Performance Evaluation of the Vibration Absorber of Vertical Direction Using Numerical Simulation and Shock Test (수치적 시뮬레이션과 충격 시험을 통한 수직방향 진동절연 완충기 설계 및 성능 평가)

  • Park, Sang-Gil;Bang, Seung-Woo;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.558-563
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc' spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock Isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

Performance Evaluation of the Vibration Absorber of Vertical Direction using Numerical Modeling and Shock Test (수치 모델링과 충격 시험을 통한 수직방향 진동절연 완충기의 성능 평가)

  • Park, Sang-Gil;Bang, Seung-Woo;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.990-993
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc'spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing ho/t ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

  • PDF

Comparison of Behaviors of Jointless Bridge according to Depth of Abutment Among Numerical Models (수치해석 모델에 따른 무조인트 교량의 교대 깊이별 거동 비교)

  • Kim, Seung-Won;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2022
  • This study investigates the behavior of a jointless bridge that integrates superstructure and abutment without an expansion joint. Based on the sensitivity analyses conducted in previous studies, a shell-based model was determined to be the most suitable numerical analysis model for jointless bridges due to the similarity of the model's results compared with the obtained displacement shape, which was influenced by relative errors, precision, and practical aspects. Accordingly, the behavior of a jointless bridge was analyzed at various wall depths using shell element-based and solid element models. In addition, the results of MIDAS Civil and ABAQUS analysis programs were compared. In the case of semi-integrated bridges (A and B), the displacement decreased as the wall depth increased due to the ground reaction force in Case 1 under a linear spring condition and +30℃. In the case where temperature was -30℃, the change in displacement was small because the ground reaction did not occur. As for bridge C (a fully integrated alternating bridge) and bridge D (an integrated chest wall alternating bridge), the displacement decreased as the wall depth increased at both +30 and -30℃ due to pile resistance. As for the comparison between the analysis programs used, the relative error in Case 1 was small, whereas a significant difference in Case 2 was observed. The foregoing variation is possibly due to the difference in the application of the nonlinear spring in the programs.

Implementation and Verification of Linear Cohesive Viscoelastic Contact Model for Discrete Element Method (선형 부착성 점탄성 접촉모형의 DEM 적용 및 해석적 방법을 이용한 검증)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2015
  • PURPOSES: Implementation and verification of the simple linear cohesive viscoelastic contact model that can be used to simulate dynamic behavior of sticky aggregates. METHODS: The differential equations were derived and the initial conditions were determined to simulate a free falling ball with a sticky surface from a ground. To describe this behavior, a combination of linear contact model and a cohesive contact model was used. The general solution for the differential equation was used to verify the implemented linear cohesive viscoelastic API model in the DEM. Sensitivity analysis was also performed using the derived analytical solutions for several combinations of damping coefficients and cohesive coefficients. RESULTS : The numerical solution obtained using the DEM showed good agreement with the analytical solution for two extreme conditions. It was observed that the linear cohesive model can be successfully implemented with a linear spring in the DEM API for dynamic analysis of the aggregates. CONCLUSIONS: It can be concluded that the derived closed form solutions are applicable for the analysis of the rebounding behavior of sticky particles, and for verification of the implemented API model in the DEM. The assumption of underdamped condition for the viscous behavior of the particles seems to be reasonable. Several factors have to be additionally identified in order to develop an enhanced contact model for an asphalt mixture.