• Title/Summary/Keyword: linear space algorithm

Search Result 324, Processing Time 0.025 seconds

Visibility based N-Body GPU Collision Detection (가시화 기반 N-body GPU 충돌 체크 방법)

  • Sung, Mankyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.400-403
    • /
    • 2022
  • This paper propose a GPU-based N-body collision detection algorithm using LBVH (Linear Bounding Volume Hierarchy) technique. This algorithm introduces a new modified Morton code scheme where the codes use an information about how much each body takes a space in the screen space. This scheme improves the GPU sorting performance of the N-Body because it culls out invisible objects in natural manner. Through the experiments, we verifies that the proposed algorithms can have at least 15% performance improvement over the existing methods

  • PDF

Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles (복수의 동적 장애물에 대한 이동로봇의 최적경로설계)

  • Kim, Dae-Gwang;Kang, Dong-Joong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF

Reconfiguration of Redundant Thrusters by Allocation Method

  • Jin, Jae-Hyun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.76-83
    • /
    • 2005
  • Thrusters are important actuators where air is rare. Since the maintenance or replacement of thrusters is not easy in such an environment, a thrusting system must be highly reliable. Redundant thrusters are used to meet the reliability requirement. In this paper, a reconfiguration problem for those redundant thrusters is discussed, especially the management or distribution logic of redundant thrusters is focused on. The logic has to be changed if faults occur at thrusters. Reconfiguration is to change the distribution logic to accommodate thrusters' faults. The authors propose a reconfiguration algorithm based on the linear programming method. The authors define the reconfiguration problem as an optimization problem. The performance index is a quantity related with total fuel consumption by thrusters. This algorithm can accommodate multiple faults. Numerical examples are given to show the advantage of the proposed algorithm over existing methods.

Design and Implementation of a Genetic Algorithm for Optimal Placement (최적 배치를 위한 유전자 알고리즘의 설계와 구현)

  • 송호정;이범근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.42-48
    • /
    • 2002
  • Placement is an important step in the physical design of VLSI circuits. It is the problem of placing a set of circuit modules on a chip to optimize the circuit performance. The most popular algorithms for placement include the cluster growth, simulated annealing and integer linear programming. In this paper we propose a genetic algorithm searching solution space for the placement problem, and then compare it with simulated annealing by analyzing the results of each implementation.

  • PDF

3D Linear and Circular Interpolation Algorithm for CNC Machines (CNC 공작기계의 3차원 직선 및 원호 보간 알고리즘에 관한 연구)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.172-178
    • /
    • 1999
  • 3D linear and circular interpolations are a basic part for the machining of complex shapes. Until now, because of the absence of appropriate algorithms for the generation of 3D lines and circles, a full accomplishment for available machine tool resolution is difficult. this paper presents new algorithms for 3D linear and circular interpolation in the reference pulse technique. In 3D space, the line or circle is not expressed as an implicit function, it is only defined as the intersection of two surfaces. A 3D line is defined as the intersection of two planes, and a 3D circle is defined as the intersection of a plane and the surface of a sphere. Based on these concepts, interpolation algorithms are designed to follow intersection curves in 3D space, and a real-time 3D linear and circular interpolator was developed in software using a PC. The algorithm implemented in a PC showed promising results in interpolation error and speed performance. It is expected that it can be applied to the next generation computerized numerical control systems for the machining of 3D lines, circles and some other complex shapes.

  • PDF

Attitude Control of Planar Space Robot based on Self-Organizing Data Mining Algorithm

  • Kim, Young-Woo;Matsuda, Ryousuke;Narikiyo, Tatsuo;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents a new method for the attitude control of planar space robots. In order to control highly constrained non-linear system such as a 3D space robot, the analytical formulation for the system with complex dynamics and effective control methodology based on the formulation, are not always obtainable. In the proposed method, correspondingly, a non-analytical but effective self-organizing modeling method for controlling a highly constrained system is proposed based on a polynomial data mining algorithm. In order to control the attitude of a planar space robot, it is well known to require inputs characterized by a special pattern in time series with a non-deterministic length. In order to correspond to this type of control paradigm, we adopt the Model Predictive Control (MPC) scheme where the length of the non-deterministic horizon is determined based on implementation cost and control performance. The optimal solution to finding the size of the input pattern is found by a solving two-stage programming problem.

  • PDF

Constant Time Algorithm for Building the Linear Quadtree on RMESH (RMESH 구조에서의 선형 사진트리 구축을 위한 상수 시간 알고리즘)

  • Kong, Heon-Taek;Woo, Jin-Woon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2247-2258
    • /
    • 1997
  • Quadtree, which is hierarchical data structure, is a very important data structure to represent binary images. Since a linear quadtree representation as is a way to store a quadtree is efficient to save space compared with other representations. It is, however, complicated and takes a large amount of time to build the linear quadtree. In this paper, we present O(1) time a linear quadtree building algorithm for a $n{\times}n$ binary image using three-dimensional $n{\times}n{\times}n$ processors on RMESH structure. Our algorithm, by use of O(1) time collapsing algorithm and reported O(1) time sorting algorithm, is simpler and easier to understand than resently presented algorithm on PARBUS structure.

  • PDF

A collision-free path planning using linear parametric curve based on geometry mapping of obstacles (장애물의 기하투영에 의한 일차매개곡선을 이용한 충돌회피 경로계획)

  • Nam-Gung, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.1992-2007
    • /
    • 1997
  • A new algorithm for planning a collision-free path is developed based on linear prametric curve. In this paper robot is assumed to a point, and two linear parametric curve is used to construct a path connecting start and goal point, in which single intermediate connection point between start and goal point is considered. The intermediate connection point is set in polar coordinate(${\theta}{\delta}$) , and the interference between path and obstacle is mapped into CPS(connection point space), which is defined a CWS GM(circular work space geometry mapping). GM of all obstacles in workspace creates overlapping images of obstacle in CPS(Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The empty area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidian Space. A GM based on connection point in elliptic coordinate(${\theta}{\delta}$) is also developed in that the total length of path is depend only on the variable .delta.. Hence in EWS GM(elliptic work space geometry mapping), increasing .delta. and finding the value of .delta. for collision-free path, the shortest path can be searched without carring out whole GM. The GM of obstacles expersses all possible collision-free path as empty spaces in CPS. If there is no empty space available in CPS, it indicates that path planning is not possible with given number of connection points, i.e. path planning is failed, and it is necessary to increase the number of connection point. A general case collision-free path planning is possible by appling GM to configuration space obstacles. Simulation of GM of obstacles in Euclidian space is carried out to measure performance of algorithm and the resulting obstacle images are reported.

A geometric approach to fault diagnosis algorithm in linear systems

  • Kim, Jee-Hong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1216-1221
    • /
    • 1990
  • An algorithm for multiple fault diagnosis of linear dynamic systems is proposed. The algorithm is constructed by using of the geometric approach based on observation that, when the number of faulty units of the system is known, the set of faulty units can be differentiated from other sets by checking linear varieties in the measurement data space. It is further shown that the system with t number of faults can be diagnosed within (t+1) sample-time units if the input-output measurements are rich and that the algorithm can be used for diagnosis even when the number of faults is not known in advance.

  • PDF

THE INDEFINITE LANCZOS J-BIOTHOGONALIZATION ALGORITHM FOR SOLVING LARGE NON-J-SYMMETRIC LINEAR SYSTEMS

  • KAMALVAND, MOJTABA GHASEMI;ASIL, KOBRA NIAZI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.375-385
    • /
    • 2020
  • In this paper, a special indefinite inner product, named hyperbolic scalar product, is used and all acquired results have been raised and proved with the proviso that the space is equipped with this indefinite scalar product. The main objective is to be introduced and applied an indefinite oblique projection method, called Indefinite Lanczos J-biorthogonalizatiom process, which in addition to building a pair of J-biorthogonal bases for two used Krylov subspaces, leads to the introduction of a process for solving large non-J-symmetric linear systems, i.e., Indefinite two-sided Lanczos Algorithm for Linear systems.