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ABSTRACT

An algorithm for multiple fault diagnosis of
linear dynamic systems is proposed. The algorithm is
constructed by using of the geometric approach based
on observation that, when the number of faulty units
of the system is known, the set of faulty units can
be differentiated from other sets by checking linear
varieties in the measurement data space, It is fur-
ther shown that the system with t number of faults
can be diagnosed within (t+l) sample-time units if
the input-output measurements are rich and that the
algorithm can be used for diagnosis even when the
number of faults is not known in advance.

INTRODUCTION

As systems to be controlled become more and more
complex, reliability becomes a vital issue of control
system design and, at the same time, an efficient
fault diagnosis mechanism is called for as an inte-
gral part of the system, The purpose of fault diagno-

sis is to detect faults in the system at as early a
stage as possible before the performance of the sys-
tem shows signs of marked abnormality, locate the

faulty parts and estimate the degree of the fault[1].
Various methods of fault diagnosis have been de-
veloped, but most of them are concerned with digital
combinational / sequential computing machines [2].
Recently, increasing attention is being paid to the
problem of fault diagnosis of dynamic industrial pro-
cesses [3] [4]. Earlier research includes results on
fault detection problems or fault location issues
under the assumption that the system has a finite set
of known fault modes/states [51[6]. In many practical
cases, however, one cannot enumerate all the possible
fault modes and characterize the behavior of each
component in its faulty state. Another well-known
approach of fault diagnosis for dynamic systems is to
introduce some redundancies at sensors, actuators and
/or the system itself in the form of a functional ob-
server or the like and to analyze residual signals to
decide whether or not there exists any fault [7]. The
analytical redundancy method, which uses the set of
parity equations representing the relations between
inputs and outputs, 1is an effective tool for diagno-
sis but the method works only if there exist redun-
dant relations in the system,
In case that a fault takes any value in some
continuous range and a system has no redundant rela-
tion as in SISO systems, one way to determine the
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location and size of a fault in the system is to con-

struct a model of the system so as to represent a
faulty condition 1in terms of the model parameters.
Such an approach may have wide applicaticn in the

diagnosis of controller malfunctions [B].

To be more specific, consider the plant which is
represented by the following linear difference model,
yB) = apy(k=1)+ - - - +a ylk=n)+bgdk)+ - - - +b u(k—n) , (1)
where y(k) and u(k) are the output and the input of
the plant. The equation parameters a,, a,, . b,
represent additive and/or multiplicative combinalion
of characteristic values of components, which are
often called as physical coefficients [4], such as
length, mass, viscosity, resistance, etc. When there
is no fault in the plant, that is, when the plant
is in normal condition, the equation parameters z,,

a,,..., b, have their nominal values,

Suppose that there occurs a change in the cha
racteristic value of a hardware component of the
plant. Then some of the equation parameters are
deviated from their nominal values. When the changes
of parameters are small and slow, several convention-
al control laws such as feedback control or adaptive
control can be applied to accommodate the change of
system behavior without serious degradation of sys-
tem performance. But when changes in some parameters
are abrupt and detrimental to system performance,
which, we say, is caused by a fault, the faulty parts
must be detected and located as early as possible,

For detecting and locating faults, a parameter
estimation method can be employed [4]}, but, &gain,
the scheme may be quite inefficient speciaily when
the number of parameters may be large and/or when the

number of allowed measurements is restricted, for
example, due to safety reasons, Further it may re-
quire additional decision techniques such as a pat-

tern recognition technique [9] to determine which
parameters are deviated from their nominal values.
Recently, Ono et al., [1] propesed a geometric
approach in which a notion of influence matrix for
the diagnostic parameter and a technique of geometric
alignment are used to determine the locations and the
values of deviated parameters in the dynamic system.

The method proves to be effective in handling the
degree of influence of each parameter on the esti-
mated variation vector but, since it is based on a

recursive parameter estimation, some difficulty may
arise in case of on-line real time diagnosis, Further
the method is essentially effective only for the case
of a single fault,



It is remarked that a typical fault diagnosis

assumes that the system under examination is fully
known and starts with checking if the system is
structurally perturbed: thus, it is natural to sup-

pose that the number of faults that occur simulta-
neously is small. On the other hand, a parameter
estimation scheme,  when applied for fault diagnosis,
may require more measurements ( and thus take time )
until the estimated values correctly indicate the
number of simultaneous faults, In this sense, any
fault diagnosis based on conventional parameter esti-
mation techniques can be inefficient and less infor-
mative,

In this paper, a systematic geometric approach
for multiple fault diagnosis of linear dynamic sys-
tems is proposed. Here the word “geometric approach”
is used to indicate the fact that a linear variety
generated by measured signals together with a concept
of distance is used for the analysis of the system,
In the proposed method, it is assumed that a system
model with given nominal parameters is available, and
by using input/output measurements, each component is
examined in regard to whether or not a given criter-
ion is satisfied and thereby, faultness of the com-
ponent is determined, This proposed approach can be
most effective for a class of systems whose time
constant is of an order of several seconds or several
minutes as in industrial process control systems (8]
so that, during one sampling period, the algorithm
can perform computations as many times as the number
of fault units,

PROBLEM STATEMENT

For concise presentation, we shall also use as
an alternative representation of eqn.(1l) the equation
yk) = o' (k) ® 2)
to be the model of the linear
consideration, Here $(k)=[ y(k-1) y(k-1) ...
is a column vector consisting of old inputs and out-
puts and present inputs of the system. And ®=[ a, a,
- b,,‘]T is the parameter vector of the eqn.(1) with
dimension N=2n+l1.
As a first step for fault diagnosis, we shall
the system as an interconnection of functional
Here a unit is a term to represent a physi-
cal device (component) or a module and carries with
it a nominal characteristic value such as resistance
or gain. When one or more characteristic values of
units change significantly, we say that the system is
in a state of a malfunction or in a faulty condition
and that fault diagnosis is to determine the units,
and their magnitudes, whose characteristic values
have changed more than prespecified values,

To be more definite, let Ry denote the N dimen-
sional Euclidean space of equation parameters . Also
let the number of the given functional units of the
system be M. We specifically designate @, to mean the
parameter vector in the fault-free condition of the
system and O, the parameter vector in some faulty
condition, respectively. When the system {s in a
faulty condition @, , one or more units must have
changed their characteristic values from the nominal
ones,

dynamic system under

view
N
units”.

Thus, the system (2) falls into faulty condition

ulk-n) T
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at some time k if

y(k) # O ()6,

k=l(0, k0+1,... (3)
and in this case there corresponds a vector €. such
that

yky = T (KO, .,  k=ky, kgtl,.. @
To see how the fault of a unit affects the

equation parameter vector { or the behavior ) of the
system represented by eqn. (2), we say that, with
regard to the given functional units of the system,
there corresponds a vector set { ej, e ..., €, }
in the parameter space Rg such that

@F — (-)o = o€, +ot apg tt ey (5)
where o, denotes a deviation of the i-th unit from
the nominal characteristic value so that a; becomes
nonzero constant if the i-th unit is faylty and o
= 0 if the unit is in normal condition.

Note that if M = N and if {ej, €3 ..., ey }
is the set of orthonomal basis, that is, e, = [10 .,
.01, ... ,e=[00 ... 1], then the components of
the parameter vector & directly indicate the loca-
tions of the units and their characteristic values.

It is remarked that the set { e, e, . . .. & }
is not necessarily to be a set of linearly indepen-
dent vectors. We shall first deal with the case in
which the characteristic values of the units and the
equation parameters are linearly and algebraically
related, The case when the relationship is nonlinear
algebraic will be discussed later.

For example, consider a system described by

Hk) = (py + p3 + pdy(k~1) + (p + py + py)ly(k—2) (6)

+py * paly(k=3) + (py + py ¥ py)ukk-3) .

where p,, p,, P,, B,, B, denote the characteristic
values of functional units. In this case, the system
has 4 equation parameters 6, ,8,,6 ,8, and 5 units p,,
i=1,2,..., 5, so that N=4 and M=5. Examining eqn.
(6), wemay set € =[1100],¢e=[0110],
€3=[1111],e =[1001],¢e=[0001]
Consider, for example, the lst unit that becomes a
faulty unit and assume that p, deviates from its
nominal value by ©i- Then the same amount of devia-
tion is caused in the parameter 6, and 6, , and
therefore we may set €1 =[ 110 0] . Also it can be
seen that a single fault of any one unit among p,,
P,, D, is not distinguishable from a double fault of
the rest, since the set {ez,e3,e4} is linearly
dependent. Note, however, that under a single fault
assumption, any functional unit is distinguishable
from another unit because any two vectors among { €y,
e,.e3,€45,e5} are linearly independent from each other,

We first consider the fault diagnosis problem
when the number of faulty units is known in advance,
We shall call the following as the t-fault diagnosis
problem (tFDP).

tFDP) Suppose the system (2) whose parameter vector
is @ at its normal operation falls into a faulty
condition @; at time k,, caused by t faulty units,
The t-fault diagnosis problem (tFDP) is to determine
the location { i,, iy, ... , iy} of t faulty units



among M units { 1, 2,..., M} and their magnitudes of
deviations in minimum number of sampling time-steps.

In order to examine the system in a faulty con-

dition O , first observe that the units { i, I,,.

., i} are faulty if and only if all the measurement
vectors @(k) satisfy the equation

yk) = o7 ()@ = DTG, + nile(k)e,l + GIIOT(k)z..I + o+ u‘.‘@r(k)el'
k=kq, kg+1,.. N
for some ( G0 Gy T ’ ’a".) with @ #0

for eachm =1, 2,..., t. Thus, the objective of tFDP
is to determine { i, ,i,,...,i¢} and the corresponding
(0;1, o , T “5) from y(k) and o(k) which are

measured trom the faulty system described by eqn. (5).

FAULT DIAGNOSIS ALGORITHM
x Case when the number of faulty units is known,

Suppose the system (2) becomes faulty at k= kg
and the number of faulty units is kmown as t. Then,
it follows from eqn.(7) that, for k,< k< ...‘< Koms
a set of m measurements, s,={8(k ), &k, ), ..., &(k,))
satisfy the following equations;

0 Ok + -+ @ (ke + O ()8 — ¥k = 0
' . (8)
o STk e + - o (k) + (k)8 — Hk,) = 0
1 m Ty ¢ 4
For an arbitrary set of t units J = { j , i,,..., j.}
and for a given set s,={ §(k,), 3k,), ... . 3(kn) )
let amx t mtrix4,(s,)and an m x 1 vector n(s,) be
defined as follows.

¢T(k1)z}1 o (krdey, - @T(kl)ei'
<:>T(lz,)e,l ¢T(k2)ej2 . q>’(k,)z,'

8,(s0) = ; : _ : 9
o' (k) o (ke - oF (ka)e;,
yky) — O (k)G
ykg) = ¥ (k)8

se) = (o)
k) = (k)8

Also let a linear variety V,(s, )be defined in an m-
dimensional space as follows.

Visa) ={x | == A()A+ns,), AR ) %0, /=12, }

where X; is an element of A (i)
Then we can obtain the following result.

Theorem 1. Suppose the set of units I={i, yiy oo erig}
are faulty. Then the null vector 0, of R™ is inV,(s,)
for any s, while, for J 1, 0 ¢ V,(s,) if smisa
measurement set satisfying the relation

rank ( 8;(s,) ) # rank ([ 8,(s,,) :s,,) 1) o

Here [ : ] denotes the augumentation of matrices.-

Proof) For the set I ={1i,, i,, ..., i.), and for
any given s,, eqn.{(8) can be written by
A (s ) N = s,) = Q, A =[“51 "‘i2 ai' ]Tv

Then, from the definition of V,(s,) in eqn.(11), x,
becomes 0,, when A = —\, , which shows that V,(s,)
contains 0,. Now consider the set of t units ] such
that J # I. For a measurement set s, that satisfies

rank( 8,(s,,) ) # rank( [ AJ(S,,,) :n(s,) 1), suppose
0, € V,(s,,). Then, from eqn.(11), there exists a
solution x, € R such that A,(s,) A, + 7(s,) = Q,,
which, however, implies that [10]

rank( A;(s, ) ) = rank( [ 8,(,) s n(s,) 1) .

This condition is contradictory to the condition (12).
Q.E.D.

The above Theorem tells that the linear variety
Vi(s, Jof faulty units can be differentiated fromV (s,
with J # 1 according to the criterion whether or not
the null vector @,, is contained in V,(s,)if the set of
I/0 measurements s. satisfying the relation (12).

It is remarked that it can happen that

rank( A;(s,,) ) = rank( { A;(s,,) : o(s,,) 1) for some
J ¥ 1 when the output of the system is not "rich” as
in the case when the system is in a regulated equili-
brium state,

It is also noted that, when the mxt matrix 4,(s,)
is of full rank, m must be greater than t to satisfy
the condition (12) since ramk( [ A;(s,) : ns,) 1)
must be greater than rank( A, (s,,) ). Therefore,
to satisfy the condition (12) for all J # 1, it is
necessary that the number of measurements be greater
than the number of faulty units. In fact, if measure-
ments are rich but not contaminated by noise, and if
there is no numerical error, then t+l number of meas-
urements are sufficient to diagnose the faulty system
with t faults,

Practically, it may happen that the linear va-
riety for the set of faulty units may not contain the
null vector because of measurements noise or numeri-
cal error, In this case, it is likely that the linear
variety for the set of faulty units lies in the
neighborhood of the origin if the effect of noise is
small, As a notion to help determine the effect of
disturbance in deciding faulty units, we use as a
criterion the square of the minimum distance from the
origin to the linear variety. More specifically, we
utilize the orthogonal projection theorem [11] to
find the vector, denoted by xf(sm),having the minimum
distance from the origin to the V,(s,) as follows.

xJO(Sm) =~ H(s, 7 Gy (5p ! A (s, ) + ls,) o3

Here G,(s,) is the Gram matrix whose element &

is <39, §i > where & is the i-th column vector
of Aj(sm)and <, > denotes an inner product, H,(s,)
is the vector whose i-th element is < (s,) ., 8 >
Then we define the distance factor,d,(s,Jof the linear
variety V,(s,) to be:

dp(sn) = 5P = = Bysn) Grlsa) ™" 805) + s, ) 1P 04

For practical applications, an appropriate
threshold value ¢ may be introduced in consideration
of given plant environment and a decision is made in
such a way that only if d,(s,) is greater than a given
threshold € , the set { j,, j,, ... , i} is not the
set of faulty units.



When we construct a diagnosis algorithm for a
faulty system, all the possible candidates for fault
units must be taken into account. For this, we must
first begin with forming the collection of subsets
consisting of t units as fault candidates. Denote the
collection of all subsets as F. : i.e.,

Fo={q 10 ={s.]2 jiY<it, 2., M1}

5)

In case that the system continuously generates
dependent measurements and there is no sign of new
information content in the measurements, we must stop
the diagnosis procedure for the safety of the system
after concluding that the system cannot be diagnosed.

For this, an appropriate maximum number M pay of
measurements should be introduced in the diagnosis
procedure.

Now, as a solution for the tFDP problem, we can
suggest the following algorithmic procedure if the
system can be described as eqn.(7) when the system
falls into a faulty condition,

Let there be given

Step 1, Let m =1t + 1 ;
Step 2. Take m measurements to form Sm |
Step 3. Let Q,=0[temporary set of candidate units ] ;
Step 4, Choose a J, out of F. [ refer (18)] H
Step 5. Compute d,(s, ) [ refer (17)] ;
Step 6. If d;(s,) <€, save J, in Q; ;
Else, continue H
Step 7. If F is empty set, go to Step 8 B
Else, go to Step 4 B
tep 8, Fe <~ Q. [ Put the contents of Q, inte F1:
Step 9, If F,has more than one element,go to Step 10;

Else, go to Step 11 H
Step 10, If m <m_,  , m < mtl and go to Step 2
Else, conclude that the system camnnot be
diagnosed and stop )
End of diagnosis :
1f F, is empty, # of faults = t and stop H
Else, ], in F, is faulty units set and stop

Step 11.

In the above t-fault diagnosis procedure, when-
ever the number of measurements is incremented, it
needs to generate txt dimensional Gram matrix and its
inversion. This computational burden, however, can be
decreased if those matrices are evaluated recursively.

To be specific, let a new measurement at & = k__,,

denoted by  ¥y(kes) = [ @ ey o ¥l T

be given after computing the ¢ (s,) as in eqn,(14).

Also let Sm+1  denote T s U Plkr)-

Then we can use the well-known matrix inversion lemma

[12] to compute the distance factor as follows.

Gy (5mar) = Gylon) + ¥;(hmar) ¥y lkust)| e
L 4

Hy(spay) = Hy(sy) + [ ylkgsr) = @ (kasr)By ] "’J(*-n)r Z3

Py(smag) = Prls) = Pylon) ¥ylhusy) 8

[ Wj(k..ﬂ)r PJ("n) ‘l,l(ku+l) + 1]—1 ‘Pl(k-ﬂ)r PJ(‘-)
where P,(s, ) = GJ(:_)—l.

4y (ma)™ Nx2Cme) 2 =11 Hy(msd)T Prlsmay) ByGomsn) + Womet) I
(7Y

%+ Case when the number of fault umits is unknown
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When a system starts malfunctioning,
know in most cases how many faults
system to malfunction. One way
system is to begin with the single fault diagnosis
procedure, with the understanding that the single
fault is the most frequent case {13], If it turns out
that the system has more than one fault, then the
proposed algorithm reveals that the system has more
than one fault and we propose to keep applying the
algorithm by increasing the number of assumed faulty
units one at a time. Since the probability of simul-
taneous multiple faults decrease drastically as the
number t gets larger, this is rather natural a method
when the fault units is unknown in advance. The fault
diagnosis procedure when the number of faulty units
is unknown is depicted as a flow chart form in Fig, 1.

we don’t
have caused the
to deal with such a

PRACTICAL APPLICATION

Suppose the system has M functional units and
let P denote the M x 1 vector whose components corre-
spond to the characteristic values of the units. Let
the relationship between ® and P is given by & =G(P).

At opresent, no fault diagnosis is available for a
general nonlinear relation @ = G(P). However, for
simple cases under a single fault assumption, we may
use the proposed algorithm.

Let the nominal characteristic values of P be
denoted by P, and the vector of their devi%tions due

to fault by AP =[38,; ¥, - -- " .
Then we can write the vector G(P) = G(P, + AP) in the
form of Taylor’s expansion as follows:

G G
G(Py + AP ) = G(Py)+ 5P1";;—(Po)+&’2;—(Po)+
] 2

3G 1 ,%6G
+ 5l7u“‘_'(Pu)+ o apx_z’(Po) o
3 apy

Pm 2
e Lttt + -
2 12.3;7,8;:2 ° (200
Then, we can show that the proposed method can be

applied for the system y(k) = §7(k) G(PY if
1. There exists only single fault, and

FG(P) -

2. For each Pe¢ R" y 0

x
i
fori=1,2,...,M and n 32

Then the system equation becomes of the same form as
eqn.(zg(,) if @ ,¢ and o; are replaced by G(F,),

Tar-r,,mdqo,, respectively, and thus
we can apply the proposed algorithm.

Here two examples are provided ; the first one

is considered to compare the proposed method with a
typical parameter estimation scheme aund the second
example shows an application for a PID controller.

Example 1 ) Consider the system represented by fol-
lowing transfer function.
Y(z) 1 s
Uz) £5 — 05z% - 017 — 02:% + 005z + 01 R

The system is equivalent to

WE) = @ (k) € , 1,2,



where o) = [k-1) y(k-2) y(k-3) yk-4) wk-5) wk-s)],
and 8,= [0.5 0.1 0.2 -0.05 -0.1 1]. Suppose u(k) =

k=1, 2,... was applied, when double faults occurs
at k = 12 in such a way that @, is deviated to @, =
[0.80.10.2-0.55-0.11] ., The diagnosis algorithm
is applied under the assumption that the number of
faults is unknown. The result in Table 1 shows that
the double faults are diagnosed in 4 sampling steps.
Here, the algorithm went through a single fault di-
agnosis to conclude there exist double faults., The
proposed algorithm may be compared with the method
based on the parameter estimation. Estimated para-
meters obtained by the orthogonal projection method
and the recursive least square method are shown in
Table 2. By comparison, we may observe that the
proposed method is more efficient in fault detection
and location than the other methods,

2,

Example 2 ) In the PID controller shown in Fig. 2,
4, iy and y denote the command input, fedback signal,
control inmput to plant respectively. Suppose the
controller contains 6 fault-prone units as follows:

P =1py Py 3y Py P5s P61 ~[K. K, K, T, Ky T T

To deal with the system in discrete domain, let the
sampling time be T = 0,5sec. Then the discrete time
dynamic equation of the PID controller obtained by
Tustin's method [13] is §7(k) ® = 0 where @ =D(®)
y(k—1) y(k=2) u (k) u (k—1) u (k=2) u (k) u;(k—1) u(k~2) ' and
‘P4(025+P6)
20426
P4(025‘P5)
p1{03(0.25+p‘)(025+p6)+p‘p5p§)
P1P3(0125-ppg)-2p 2 5P}
P103(025-p )(025—pg)+P4psPel
_Pz{l’3(025+Pa)(025+P6)+P4P5P6}
~p{p3(0.125—p pg)~2p P sP 6}
~pp3(025-p )(025-pg)+ppspel

@=0G(P)=

Thus, the mapping G is nonlinear and we can know that
G(P) satisfies the assumption 2. Therefore, a single
fault diagnosis is valid for the PID controller. When
u (k) = 900 , u (k) = 60/ 61 u{(k—l) + 0.9/ 61 y(k)
and the normal characteristic values are P ={ 1.0
1.01.42,02,21.07, then it is found that for any
single fault, the system is diagnosed exactly within
as few as 2 sampling time-steps, as shown in Table 3.

CONCLUSION

An algorithm for multiple fault diagnosis of

described by a linear difference model was
It was shown that the system with t number
sample-time
rich. Also
extended to
unknown by

plants
proposed.
of faults can be diagnosed within ( t+l )
units if the input-output measurements is
the proposed algorithm can be naturally
the case that the number of faults 1is
beginning with a single fault diagnosis as a first
step, and proceeding to multiple cases one by one,
Specially, robustness property of the proposed algo-
rithm against measurement noise were analyzed. We
believe that this geometric approach will be effec-
tive for systems in which the number of units in
simultaneous faulty state is less than the total
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number of units or for systems with large time cons-
tants and the sampling period is quite long.
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Fig. 1. Flow Diagram of Fault Diagnosis Procedure
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Table 1. Result of Diagnosis Procedure

PARAMETER EZSTIMATED BY RECURSIVE LEAST SQUARE

sempling wstimsted deviations
il
12 -0.0111  -0.0103  -0.0093
13 0.2512  ©0.0718 -0.1001
1e [ 0.0390  ~0.1448
18 0.1394  -0.1523
19 0.1073 ~0.0051
L7 ©0.0057  0.0004

PARANETER ESTIMATED BY CRTIOGONAL PROJECTION

nanp) ing astimsted deviations
atep .
4 -0.0111 ~0.0108 ~0. 0093 -0.0078  -0. 1 ~0.0041
}g 0.2512 0.0716  -0.1001 ~0.2711  -0.22%4 0.0018
14 0.2438 0.0390  -0.1440 =0.3678  -0.0048 0.1030
18 0.327% ©.1388 ~0.1582% -0.4176  -0.0338 0.0842
18 ©.1083 0.1073  -0.0049  -0.4974 . 0473 0, 0880
17 0.3 0. -0. -0. 3000 0. 0000

Table 2. Result of Parameter Estimation

1221

DIAMINOBIS OF FAULTY PIV OUNTRULLER
normal = ( 1, 0OOO

10000 . 4000 2 0060 4, wann

1. 0600 )
faulty 2 [ 2.0000 1.0000 1.4000 2.0000 2.2000 1.0000 }
candidate mples altor J-camwplen after 4-samploo

1 0. 0000 0. 0000
2 1t 3. 4201
H 2. 8.5160
M 0.3200
M 11.2422
. 13.0728
unit heving
min, d.f, 1 1 1
Btirated
ietion 1. 0000 1. boLY 1.00do
normal = ( 1.0000 1.0000 1.4000 2.0000 2.2000 1.0000 ]

feulty = [ 1.0000 2.0000 |.4000 2.0000 2.2000

1.0000 )

candidate after 2-samples sfter J-sawples after 4-seuples

1 1.4387 7.7584 0.

2 -0. ~0.0000 [

] 0. 5559 2. 4490 8.

4 0. 0200 0.0819 0.

] 0.2077 0.9360 2

13 71 3.2044 ]
unit heving
min. d.f. 2 2 2
estinated

lation 1. 0000 1. 0000 1. 0000

normal = [ 1.0000 1.0000 1.4000 2. 0000 2.2000 1.0000 )

faulty ® [ 1.0000 1.0000 2.0000 2.0000 2.2000 1.0000 }

candidate sfter I-vamplou afine J-nnmplon aftor 4-nampien
1 1. 4428 8. 1904 29.2006
1 4.0174 12 8918 24.hanh
H 0 @, oo ~0.0u00
K . 0.001) 0.0038
[ 4.8278 8.2047 10.4830
. 2.1793 5.7287 7.0024

unit having

min. d.f, 3 3 3

tod
devistion 1. 4000 1. 4000 1. 4000
[ moreal = [ 1.0000 1.0000

1.4000 2.0000 2.2000 1.0000 )
Thulty = 1 1.0000 1.0000 14000 4.u000 2. 2000

1.0000 |
candidate after Z-sawpler after J-vamplen after 4-samples
1 0.0086 0.0278 0.0048
2 0. 0008 0.0204 0.0820
: 8.0001 g 0002 0. 0004
-G, . 0. 0000
13 0.0016 0. 0085 ¢.0118
L 0. 00086 0. 0017 0.0004
unit having
win. a.f, 1 L] 1
ostimatod .
deviation 2. 0000 2. 0000 2.0000

hormal x [ 1.0000 3.0000 {,4000 2.0000 2.2000 1.0000 |

faulty » ( 1.0000 31,0000 1.4000 2.0000 4.4000 1.0000 )

onndidate Sftar 2-snmples aftar 3-somples after 4-2amplos
h
1 9. 0020 0.0307 0.07¢0
2 0. 078 0.0%%8 0.087¢
3 0. 0000 . 0.0019
4 0.0001 0.0011 0.0021
] 0.0000 o. 0.
e 0. 0000 0. 0002 ©. 0004
unit baving
min, d.f, 3.5,0 13 L]
antimatod
fation 2.2000 2,2000

N

normel = [ 1.0000 1,0000 I,4000 2.0000 2.2000 1.0000 )
faulty = [ 1.0000 1.0000 1.4000 2.0000 22000 2.0000 )

onnd ldatn ALoE 2-nnamplon aflag i aflor A-nampiou
1 2.7004 12.717% 37,8889
2 1.2832 4.90n41 12. 0869
3 0.4114 1.0488 1.80%0
4 0.0047 0. bovz 0.0108
L] 0.0704 1.u479 2.0840
] 0. 000¢ 0. 0.

unit having

L1t d. L] L] L

tad
deviation 1. 0000 1. 0000 1.0000

Table 3. Fault Diagnosis of PID Controller




