
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Attitude Control of Planar Space Robot based on Self-Organizing Data Mining

Algorithm

YoungWoo Kim∗, Ryousuke Matsuda∗, Tatsuo Narikiyo∗ and Jong-Hae Kim∗∗

∗ Toyota Technological Institute (TTI), Nagoya, Japan, (Tel: +81-52-819-1818)
∗∗ Nagoya University, Nagoya, Japan

Abstract: This paper presents a new method for the attitude control of planar space robots. In order to control highly

constrained non-linear system such as a 3D space robot, the analytical formulation for the system with complex dynamics and

effective control methodology based on the formulation, are not always obtainable. In the proposed method, correspondingly,

a non-analytical but effective self-organizing modeling method for controlling a highly constrained system is proposed based

on a polynomial data mining algorithm. In order to control the attitude of a planar space robot, it is well known to require

inputs characterized by a special pattern in time series with a non-deterministic length. In order to correspond to this type

of control paradigm, we adopt the Model Predictive Control (MPC) scheme where the length of the non-deterministic horizon

is determined based on implementation cost and control performance. The optimal solution to finding the size of the input

pattern is found by a solving two-stage programming problem.
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1. Introduction
As a new frontier for the human race, space has been at-

tracting great interests. Robotics and its application will be

essential to the mission. Among many researches on space

robotic systems, the attitude control of artificial satellite sys-

tem equipped with several manipulators has been recognized

as one of the most significant challenges. Space robots are

generally restrained by non-holonomic constraints that with-

out external forces and momentum exerted, angular momen-

tum is conserved.

Many approaches have been presented to stabilize the non-

holonomic systems, where some of their approaches make

use of smooth time-varying or discontinuous control laws[2]

[3]. As pointed out by Brockett, however, although the non-

holonomic systems are controllable, they are not easily sta-

bilized by applying smooth static state feedback [1]. In our

earlier work, a smooth static state feedback control law had

been proposed to stabilize the chained system which is one of

special classes of non-holonomic system [7]. Another works

include [8]. In [8], trajectory tracking control method for

non-holonomic systems was proposed, where adaptive con-

trol algorithm was applied to consider uncertain parameters.

On the other hand, data mining or data analysis is a new

discipline lying at the intersection of statistics and artificial

intelligence. Data mining algorithm analyzes observational

data sets to find each parameter’s relationship with another,

and summarizes the data in the way that is useful to the

designer. GMDH (Group Method of Data Handling) is a

well-known data mining technique that describes suspected

dynamics in the form of minimal polynomials.

One of the applications of data mining algorithms is [4],

where human driving skills are modeled by polynomial ex-

pression. The other applications include [5] and [6] where

meteorological model and U.S. interests rate model were con-

structed. The data mining algorithm is well-defined proce-

dure that takes data as input and produces output in the

form of models or patterns. However, its applications are

often restricted to conservative problems such as data inter-

pretation, data clustering, pattern recognition etc. These are

some types of models constructed by data observation, but

attempts to bring out a desired data from the constructed

model, are rarely found in literatures. Since the latter is,

however, subjected to probabilistic figures, not determinis-

tic analysis, both modeling and control (or data inference)

should be considered together. This is because modeling

seeks to represent the prominent structures of the data set,

and not small idiosyncratic deviations.

This paper presents a new method for attitude control of

planar space robots. In order to control highly constrained

non-linear systems such as a 3D space robot, the analytical

formulation for the system with complex dynamics, and the

effective control methodology based on the developed model,

are not always obtainable. In the proposed method, cor-

respondingly, a non-analytical but effective self-organizing

modeling method for controlling highly constrained systems

are proposed based on polynomial data mining algorithm.

In order to control the attitude of a planar space robot, it is

well-known to require inputs characterized by special pattern

in a time series with a non-deterministic length. Once the

pattern of inputs is decided, the only parameter that deter-

mines control performance is the size of the pattern (which

can be translated to the length of the time series). This

implies if the input series is determined in a new sampling

instant, they cannot be changed before fulfilling all the time

series inputs. In order to correspond to this type of control

paradigm, we adopt the Model Predictive Control (MPC)

scheme where the length of non-deterministic horizon is de-

termined based on implementation cost and control perfor-

mance. Optimal solution to find the size of the input pattern

is found by solving a two-stage programming problem.

2. Dynamics of Planar Space Robot
This chapter presents a brief overview of the system envi-

ronments. Fig.1 illustrates a planar space robot with two
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Fig. 1. Rigid Body Model of Planar Space Robot

arms connected to a base satellite via revolute joints, where

M and I denote the mass and inertia of the main frame, and

mj and Ij denote the mass and inertia of arm j. The revo-

lute joints are located at a distance r from the base center,

and arm link attached to these joints have length l.

At these joints, torque inputs τ1 and τ2 actuate the joint an-

gles of the right and left arm. Let θ denotes the attitude of

the main frame with respect to
∑

0
, and φ1 and φ2 denote

the angles of the right and left arm with respect to the main

frame. Using these parameters, the conservation law of an-

gular momentum and motion equation can be expressed as

follows,

H(φ1, φ2)

[
φ1

φ2

]
+ C(φ1, φ2, φ̇1, φ̇2) =

[
τ1

τ2

]
(1)

θ̇ = α(φ1, φ2)φ̇1 + β(φ1, φ2)φ̇2 (2)

, where H ∈ R2×2 and C ∈ R2 are inertia matrix and non-

linear forces respectively. Also α and β are smooth functions

as follows,

α(φ1, φ2) =
−(ml2 + mrl cos φ1)

I + 2mr2 + 2ml2 + 2mrl(cos φ1 + cosφ2)
(3)

β(φ1, φ2) =
−(ml2 + mrl cos φ2)

I + 2mr2 + 2ml2 + 2mrl(cos φ1 + cosφ2)
(4)

This system can be formulated as (5) by introducing inputs

[v1, v2]
T .

d

dt

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x4

x5

α(x1, x2) + β(x1, x2)

0

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎦

[
v1

v2

]

(5)

, where x is the state variable vector defined by

[x1, x2, x3, x4, x5]
T =

[
θ, φ1, φ2, φ̇1, φ̇2

]T
(6)

, and v1 and v2 are control inputs that represent angular

accelerations of the left and right arms. The system of the

equation (5) is a special type of non-holonomic system that

is subjected to Phaffian constraint of the following form.

J(q)q̇ = 0 (7)

This system is called Caplygin system where Phaffian con-

straint cannot be integrated to have the algebraic equation

form of H(q) = 0. The canonical form of Caplygin system

can be rewritten by introducing new inputs [u1, u2] as fol-

lows,

d

dt

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ α(x1, x2)

1

0

⎤
⎦u1 +

⎡
⎣ β(x1, x2)

0

1

⎤
⎦u2 (8)

, where u1 and u2 are angular speeds of left and right arm.

3. Self-Organizing Polynomial Data Mining
Algorithm

Since Caplygin system is highly restricted by non-linear

Phaffian constraint as shown in the previous section, it is

not straightforward to stabilize the system, applying conven-

tional state-variable formulation of modern control theory.

It is known for the attitude stabilization of Caplygin system

that it requires special type of inputs whose behaviors in a

time series are characterized by a pattern on a periodic basis.

The problem is how to construct the model that describes

the exact behavior of the system. The model should be in

a useful form to handle with a control algorithm that for

example, aforementioned input pattern (that is considered

as useful information to characterize the dynamics of a pla-

nar space robot) should be helpfully used. Group Method

of Dada Handling (GMDH) was used to extract the rela-

tionships between the target variable (to be controlled) and

other observational data sets, and compress them in a poly-

nomial expression. The exploratory data analysis by means

of GMDH is carried out to model suspected dynamics in a

self-organizing manner as follows,

Step 1 Acquisition of Data Sets: The observational data sets

are subdivided into a training set and a checking set.

Step 2 Propagation of Variables: All n independent inter-

mediate variables in the training set are combined by

partial polynomial as follows.

zk = a0,k + a1,kxi,p + a2,kxi,q

+a3,kx2
i,p + a4,kx2

i,q + a5,kxi,pxi,q
(9)

, where p, q = 1,2, · · · ,m, p �= q, k = 1,2, · · · ,1/2 ×
m(m + 1). The coefficients of partial polynomial (9)

are obtained by applying the least square method that

minimizes the difference between target variable yi and

the dependent variable zk as follows,

J =

ntr∑
i=1

(yi − zk(xi,p, xi,q))
2 (10)

, where nt is the number of data in the training sets.
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Step 3 Representativeness Assessment: The adequacy of

each newly discovered variables zk to represent the tar-

get variable is measured by following representativeness

criterion.

rk =

√∑n

i=nt+1
(yi − zk,i)2∑n

i=nt+1
y2

i

(11)

Here, zk,i denotes i-th data of the variable zk, where

zk,i is obviously in the checking set since i ≥ nt.

Step 4 Elimination of Least Effective Variables: The vari-

ables zk,i (1 ≤ k ≤ nt) are reordered in the order of the

size rk from smallest to biggest. A threshold value Rth

is introduced and all zk which do not satisfy rk < Rth

are screened out from the data set. The remaining vari-

ables are redefined as new x.

Step 5 Model Optimality Test: If rmin,l > rmin,l+1, go to

Step 2, otherwise terminate with end, where l is the

iteration number, and rmin,l is the minimal number of

rk at l-th iteration.

In order to construct the planar space robot model which

best associates control objective and observational data

available, the intrinsic properties of the system such as an

input pattern should be fully considered. once the pattern

of the inputs is decided, the only parameter that influences

control performance is the size of the input pattern (which

can be translated to the length of the time series).

According to the data mining procedure of GMDH, modeling

problem for attitude control of a planar space robot can be

stated as follows:

Find the optimal dynamics that describes the relation-

ship between the size of given input pattern and base

angular displacement of planar space robot.

The following inputs are considered in this paper,

φleft = R(1 − cos Γ(t)) (12)

φright = R(sinΓ(t)) (13)

Γ(t) = Λt − sin(Λt) (14)

, where φleft and φright denote angular distance of the left

and right arm, respectively, and R denotes the variable which

determines the size of each input. The input pattern of above

equations shows that the left and right arms start to behave

in a patterned movement and come back to the start posi-

tion in a cycle determined by the lengh of 2π/Λ. Note that

Γ(t) is a smooth function with monotonic increase. With

this function, the system can be controlled in an effective

form that when the system rotates θ � 0, the time scale is

lengthened, and when the system rotate θ ≈ 0, time scale is

also shortened. In order to obtain the R − ∆θ relationships

in this paper where R is observational data set and angular

displacement ∆θ(θ(t + τ ) − θ(t)) is target variable, GMDH

algorithm is applied to the data set. Since the conventional

GMDH algorithm, however, needs more than three data sets

fully independent with each other to describe target vari-

able, it cannot be applied to our problem at the moment.

Table 1. Coefficients of the polynomial expression developed

by GMDH

Coefficient Value Coefficient Value

c1 -2 × 10−7 c2 -0.0002

c3 -2 × 10−6 c4 0.1256

c5 3 × 10−6 c6 -0.021

Table 2. Parameters of Planar Space Robot

Mass of main frame M = 3.25 [Kg]

Inertia moment I = 6.46 × 10−3
[
Kgm2

]
of main frame

Masses of left m1 = m2 = 0.868 [Kg]

and right arms

Distance between base r = 0.0500 [m]

center and revolute joint

Length of both arms l = 0.450 [m]

Therefore, some modifications are carried out in this paper

as follows.

Step 4 Elimination of Least Effective Variables: The sets xp

(1 ≤ p ≤ m) are added to the newly generated variables

zk, where xp is labeled as znt+p. The redefined variable

zk̄ (1 ≤ k̄ ≤ nt + m) are reordered in the order of the

size rk̄ from smallest to biggest. A threshold value Rth

is introduced to screen out zk which satisfies rk < Rth

from the data set. The remained variables are redefined

as new x.

According to this procedure, developed dynamics are shown

in the following.

∆θ = θ(t+ τ )− θ(t) = c1 + c2R+ c3R
2 + c4R

3 + c5R
4 + c6R

5

(15)

The coefficients in (15) and parameters used in the numerical

experiment are shown in Table 1 and Table 2, respectively.

Fig.3 compares the developed R−∆θ dynamics by means of

GMDH and actual angular displacements with respect to R,

where the former coincides in all points with the latter.

4. Attitude Control of Planar Space Robot via
Model Predictive Control Policy

This section describes an effective method for the attitude

control of planar space robot. In order to control the Caply-

gin system shown in the previous section, structural pecu-

liarities of the system such as input pattern should be fully

considered. The input pattern is represented over the time

interval that is much longer than sampling interval. This

implies if the input series are determined in a new sampling

instant, they cannot be changed before fulfilling all the time

series inputs. In order to correspond to this type of control

paradigm, we adopt the Model Predictive Control (MPC)

scheme where the size of non-deterministic horizon is de-

termined based on implementation cost and control perfor-
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mance. The optimal solution to find the size of input pattern

that is the only factor to determine control performance, is

found by solving a two-stage programming problem.

Based on the model developed in the previous section, the

control problem for the attitude control of the planar space

robot can be stated as follows:

Find R and Λ which minimize following performance

criteria

J = (x3(kSTS + TP (kP )) − θd)
2 + (TP (kP ))2 (16)

subject to (3), (4), (8), (12), (13), (14), and (15) ,

where θd is the desired value for θ, kS and kP are the

sampling index and the planning index, and TS = t/kS

and TP = t/kP are the sampling interval and planning

interval, respectively.

The first term of (16) imposes the cost as for the difference

between x3 and θd and the second term imposes the cost as

for the length of the planning interval TP . Note that the

shorter TP accelerates convergence of x3 to θd. The length

of TP is, however, constrained by (1) that some parameters

such as φ1, φ2, φ̇1, φ̇2, φ̈1, φ̈2 have their maximum values as

follows,

| φ1 |≤ φ1,MAX , | φ2 |≤ φ2,MAX (17)

| φ̇1 |≤ φ̇1,MAX , | φ̇2 |≤ φ̇2,MAX (18)

| φ̈1 |≤ φ̈1,MAX , | φ̈2 |≤ φ̈2,MAX (19)

Since x3 is the function of kS and TP (kP ) with a variable

length (TP is also the function of (kP )), this problem is in the

class of a non-linear programming problem that is burdened

with large computational efforts. This paper, correspond-

ingly, proposes a two-stage programming based two-stage

method as follows,

Step 1 Find R which minimizes

J = (x3(kSTS + TP ) − θd)
2

= (x3(kSTS) + ∆θ − θd)
2

= (x3(kSTS) + a1 + a2R + a3R
2

+a4R
3 + a5R

4 + a6R
5 − θd)

2

(20)

subject to (17) and

Time

Planning Instant
Sampling Instant

ST( )P PT k
( )3, 4P Sk k= =
Present Point

1Pk = 2Pk = 3Pk =

Input Time Series
With a Variable Length

Fig. 3. Proposed Model Predictive Control Policy

RMIN ≤| R |≤ RMAX (21)

, where RMAX and RMIN are physically constrained

maximal and minimal value of R, and (17) can be rep-

resented using R as follows,

R ≤ φ1,MAX

1−max{cos(Γ(kS))} (22)

R ≤ φ2,MAX

max{sin(Γ(kS))} . (23)

Step 2 Find the minimal input horizon TP (kP ) = 2π
Λ

which

satisfies (18), (19) and

ΛMIN ≤ Λ (24)

, where ΛMIN is the physically constrained minimal

value of Λ, and (18) and (19) can be represented using

Λ as follows,

Λ ≤ argΛ{φ̇1,MAX} Λ ≥ argΛ{φ̇1,MIN} (25)

Λ ≤ argΛ{φ̇2,MAX} Λ ≥ argΛ{φ̇2,MIN} (26)

Λ ≤ argΛ{φ̈1,MAX} Λ ≥ argΛ{φ̈1,MIN} (27)

Λ ≤ argΛ{φ̈2,MAX} Λ ≥ argΛ{φ̈2,MIN}. (28)

Note that each parameter of the above equations is easily

found that for example,

argΛ{φ̈2,MAX} =

√
φ̈2,MAX

4R
.

Fig. 4 shows the proposed model predictive control policy

with the variable input horizon TP (kP ). At every planning

instant kP (kS = 1) in Fig. 4, the controller firstly finds R

that is a type of measure for the size of input pattern, and

then obtains the input horizon TP (kP ). At the next sampling

instant kS = 2, the controller put out corresponding values

of inputs as follows,

u1(kS) = R(1 − cos(Γ(kS))) (29)

u2(kS) = R(sin(Γ(kS))) (30)

, where

Γ(kS) = ΛkSTS − sin(ΛkSTs). (31)

380



Fig. 4. Planar Space Robot
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5. Experimental Results
In this subsection, the experimental results are provided to

investigate a usefulness of the proposed modeling and control

method for the planar space robot. The prototype system

is shown in Fig.4. Fig.5 shows the outline of experimental

apparatus. In Fig.5, the planar space robot is on the flat

table, where this table is covered with glass. Each parameter

of the system is shown in TABLE II. Note air pads installed

at the center of the main frame and at the end of the two

arms. Through them, compressed air is exhausted on the

table in order to minimize friction between the robot system

and the ground. Maximum power of the air compressor is

3.7[kW]. The floating table with the size 2400 × 1500 [mm]

is perfectly leveled on the ground.

Two DC servomotors equipped on the main frame of the

robot actuate two arms separately. The angles of the arms

with respect to the main frame (φ1 and φ2 of Fig.2) are mea-

sured with encoders. Maximum power of the DC servomo-

tors is 18.5[W]. CCD camera mounted on the ceiling detects

signals of LEDs installed at the end of the arms and mea-

sures movement of the robot. Sensory information taken by

the camera is not used for controlling but only for modeling

the R-∆θ dynamics of the system.

Fig.6 illustrates the data transfer unit of experimental appa-

ratus. Joint angle data measured by encoders and position

data taken by CCD camera are transferred to DSP through

Position
 sensor

Encoder

Motor (L)

Motor (R)

 A/D
board

Counter
board

  D/A
board

D S P
  CPU
50MHz

P C

Position data
Voltage (8ch)

Angle data
Pulse (2ch)

Power
 AMP

Power
 AMP

Voltage

Voltage

(1ch)

(1ch)

Space robot Controller

Fig. 6. Data Transfer Unit of Experimental Apparatus
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A/D converter and counter board. Then control signals com-

puted by DSP are sent to the amplifiers of DC servomotors

through the D/A board.

We firstly show the result obtained by applying the proposed

modeling method to real system. In Fig.7, the points marked

with diamonds indicate the sampled data obtained by apply-

ing the inputs whose size of pattern is varied from -0.55 to

0.55. The R − ∆θ dynamics was obtained as follows,

∆θ = −8 × 101−6R2 + 0.124712R3

+0.000021R4 − 0.020329R5 − 0.000013R6 (32)

In Fig.7 the trajectory within −RMIN ≤ R ≤ RMIN plots

almost 0 value, and the trajectory at R = RMAX plots the

inflected point that we only use this dynamics in the regions

of RMIN ≤ R ≤ RMAX and −RMAX ≤ R ≤ −RMIN

Fig.9 and Fig.9 plots planned value of inputs u1 and u2,

and their actual values. Although the planned values of in-

puts are smooth curves, actual implementation to the sys-

tem contains some vibration. This is because the arms of

the prototype system are made with aluminum beams that

with some power exerted, they vibrate. The trajectory of

x3, however, well converges to 0 [rad] in Fig.8. We see that

the effectiveness of the proposed method is confirmed.

6. Conclusions
This paper has presented a new method for attitude control

of planar space robots based on a self-organizing polynomial

data mining algorithm. We firstly proposed a new modeling

method, taking advantage of the structural peculiarities of
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the system such as input pattern. The developed model is

used for stabilizing the system where two-stage method is

applied to obtain optimal size of the given inputs. The pro-

posed method has been formulized based on model predictive

control policy with variable length of input horizon. Lastly,

the usefulness of the proposed method has been confirmed

through some experiments.
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