• Title/Summary/Keyword: linear scanning method

Search Result 137, Processing Time 0.021 seconds

Development of the Photogrammetric Method of Head Through 3-Dimensional Approach (3차원적 접근 방식을 통한 머리 부위 사진 측정법의 개발)

  • Kim, Woong;Nam, Yun-Ja;Kim, Min-Hyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.7-13
    • /
    • 2005
  • We developed an accurate and reliable photogrammetric method available instead of the direct measurement method and the three-dimensional scanning method. Our research was restricted to a head on the body. Approaching three-dimensionally, we calibrated a distorted image of a photograph and got linear equations of camera beams. Then we assigned z values of landmarks in the head and obtained three-dimensional coordinates for each landmark putting those z values in linear equations of camera beams and finally could calculate measurement results from those three-dimensional coordinates. When we compared results obtained by a program, 'Venus Face Measurement(VFM)' that we had developed applying our method with results obtained by the direct measurement method, VFM showed very accurate and reliable results. In conclusion the photogrammetric method developed in this study was testified to an outstanding measurement method as a substitute for the direct measurement method and the three-dimensional scanning method.

Study of Ultrasound Imaging Technique for Diagnosing Osteoporosis (골다공증 진단을 위한 초음파 영상화 진단 기법 연구)

  • Kim, H.J.;Han, S.M.;Lee, J.H.;Lee, M.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.386-392
    • /
    • 2002
  • Ultrasonic has been proposed as an attractive means of detecting bone loss. There have been several commercial ultrasound devices developed for measuring the heel to predict fracture at other bones. However, these devices select only single point of heel bone as measurement site. It causes poor assessment of bone quality due to the error of transducer positioning. In an effort to improve current ultrasound systems, we evaluated the linear scanning method which provides better prediction of bone quality and an accurate image of bone shape. The system used in this study biaxially scans a heel bone using automated linear scanning technique. The results demonstrated that the values of ultrasound parameters varied with different positions within bone specimen. It has been also found that the linear scanning method could better pre야ct bone quality, eliminating the error of transducer positioning.

Laser Scanning Technology for Ultrasonic Horn Location Compensation to Modify Nano-size Grain (나노계면 형성을 위한 초음파 진동자 위치보정을 위한 레이저 스캐닝 기술)

  • Kim, Kyugnhan;Lee, Jaehoon;Kim, Hyunse;Park, Jongkweon;Yoon, Kwangho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1121-1126
    • /
    • 2014
  • To compensate location error of ultrasonic horn, the laser scanning system based on the galvanometer scanner is developed. It consists of the 3-Axis linear stage and the 2-Axis galvanometer scanner. To measure surface shape of three-dimensional free form surface, the dynamic focusing unit is adopted, which can maintain consistent focal plane. With combining the linear stage and the galvanometer scanner, the scanning area is enlarged. The scanning CAD system is developed by stage motion teaching and NURBS method. The laser scanning system is tested by marking experiment with the semi-cylindrical sample. Scanning accuracy is investigated by measured laser marked line width with various scanning speed.

Tomographic Reconstruction of Asymmertic Liquid Spray from Multi-angular Scanning (다각주사법에 대한 비대칭 분무 구조의 토모그래피 재구성)

  • 이충훈;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.177-186
    • /
    • 1996
  • A convolution alogorithm combined with Fourier transformation is applied to the tomographic reconstruction of the asymmetric spray structure to identify the local drop size and volume concentration. The line of sight intergrated data from Malvern particle analyzer with multiangular scanning form a basic information for the deconvolution. Linear interpolation is tested to obtain the effect of increasing number of scanning angles. This transformation method predicts well the structure of asymmetric spray. The tehnique can be extended to other line of sight combustion diagnostics.

  • PDF

Laser Generation of Focused Lamb Waves

  • Jhang, Kyung-Young;Kim, Hong-Joon;Kim, Hyun-Mook;Ha, Job
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.637-642
    • /
    • 2002
  • An arc-shaped line array slit has been used for the laser generation of focused Lamb waves. The spatially expanded Nd:YAG pulse laser was illuminated through the arc-shaped line array slit on the surface of a sample plate to generate the Lamb waves of the same pattern as the slit. Then the generated Lamb waves were focused at the focal point of which distance from the slit position is dependent on the curvature of slit arc. The proposed method showed better spatial resolution than the conventional linear array slit in the detection of laser machined linear defect and drill machined circular defect on aluminum plates of 2mm thickness. Using the focused waves, we could detect the linear defect and the circular defect with the improvement of spatial resolution. The method can also be combined with the scanning mechanism to get an image just like by the scanning acoustic microscope(SAM).

Laser scanning unit with plastic f$\theta$ lenses featuring high resolution (600DPI용 플라스틱 f$\theta$렌즈가 실장된 Laser Scanning Unit 의 측정 및 평가)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 1999
  • We investigate the evaluation items of LSU (Laser Scanning Unit), such as beam size, f$\theta$ characteristics, linearity, skew and bow, optical power ratio between image height of 0mm and $\pm$108 mm, pitch error, Jitter and shift of printing position. Through the measurement of LSU using BSH (Beam Scan Head) installed on LMC (Linear Motion Controller) which moves linearly within the whole scanning range (-108 mm~+108 mm), we can ascertain plastic f$\theta$ lenses, which are manufactured by TVLP (Two-step Variable Low Pressure) molding method, to satisfy 600DPI(Dots Per Inch) performance.

  • PDF

A study of the design and control system for the ultra-precision stage (초정밀 스테이지 설계 및 제어 시스템에 관한 연구)

  • Park Jongsung;Jeong Kyuwon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

  • Kim, Jae-Hong;Kim, Ki-Baek;Kim, Woong-Chul;Kim, Ji-Hwan;Kim, Hae-Young
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • Objective: This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods: Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of interexaminer and inter-method variability. Results: The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions: The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.