• Title/Summary/Keyword: linear regression model

Search Result 1,946, Processing Time 0.029 seconds

Developing Accident Models of Rotary by Accident Occurrence Location (로터리 사고발생 위치별 사고모형 개발)

  • Na, Hee;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.83-91
    • /
    • 2012
  • PURPOSES : This study deals with Rotary by Accident Occurrence Location. The purpose of this study is to develop the accident models of rotary by location. METHODS : In pursuing the above, this study gives particular attentions to developing the appropriate models using multiple linear, Poisson and negative binomial regression models and statistical analysis tools. RESULTS : First, four multiple linear regression models which are statistically significant(their $R^2$ values are 0.781, 0.300, 0.784 and 0.644 respectively) are developed, and four Poisson regression models which are statistically significant(their ${\rho}^2$ values are 0.407, 0.306, 0.378 and 0.366 respectively) are developed. Second, the test results of fitness using RMSE, %RMSE, MPB and MAD show that Poisson regression model in the case of circulatory roadway, pedestrian crossing and others and multiple linear regression model in the case of entry/exit sections are appropriate to the given data. Finally, the common variable that affects to the accident is adopted to be traffic volume. CONCLUSIONS : 8 models which are all statistically significant are developed, and the common and specific variables that are related to the models are derived.

Analysis of Linear Regression Model with Two Way Correlated Errors

  • Ssong, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.231-245
    • /
    • 2000
  • This paper considers a linear regression model with space and time data in where the disturbances follow spatially correlated error components. We provide the best linear unbiased predictor for the one way error components. We provide the best linear unbiased predictor for the one way error component model with spatial autocorrelation. Further, we derive two diagnostic test statistics for the assessment of model specification due to spatial dependence and random effects as an application of the Lagrange Multiplier principle.

  • PDF

Performing linear regression with responses calculated using Monte Carlo transport codes

  • Price, Dean;Kochunas, Brendan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1902-1908
    • /
    • 2022
  • In many of the complex systems modeled in the field of nuclear engineering, it is often useful to use linear regression-based analyses to analyze relationships between model parameters and responses of interests. In cases where the response of interest is calculated by a simulation which uses Monte Carlo methods, there will be some uncertainty in the responses. Further, the reduction of this uncertainty increases the time necessary to run each calculation. This paper presents some discussion on how the Monte Carlo error in the response of interest influences the error in computed linear regression coefficients. A mathematical justification is given that shows that when performing linear regression in these scenarios, the error in regression coefficients can be largely independent of the Monte Carlo error in each individual calculation. This condition is only true if the total number of calculations are scaled to have a constant total time, or amount of work, for all calculations. An application with a simple pin cell model is used to demonstrate these observations in a practical problem.

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.

Diagnostics for Regression with Finite-Order Autoregressive Disturbances

  • Lee, Young-Hoon;Jeong, Dong-Bin;Kim, Soon-Kwi
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.237-250
    • /
    • 2002
  • Motivated by Cook's (1986) assessment of local influence by investigating the curvature of a surface associated with the overall discrepancy measure, this paper extends this idea to the linear regression model with AR(p) disturbances. Diagnostic for the linear regression models with AR(p) disturbances are discussed when simultaneous perturbations of the response vector are allowed. For the derived criterion, numerical studies demonstrate routine application of this work.

Bayesian Estimation for the Multiple Regression with Censored Data : Mutivariate Normal Error Terms

  • Yoon, Yong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • This paper considers a linear regression model with censored data where each error term follows a multivariate normal distribution. In this paper we consider the diffuse prior distribution for parameters of the linear regression model. With censored data we derive the full conditional densities for parameters of a multiple regression model in order to obtain the marginal posterior densities of the relevant parameters through the Gibbs Sampler, which was proposed by Geman and Geman(1984) and utilized by Gelfand and Smith(1990) with statistical viewpoint.

  • PDF

Bayes Estimation in a Hierarchical Linear Model

  • Park, Kuey-Chung;Chang, In-Hong;Kim, Byung-Hwee
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the problem of estimating a vector of unknown regression coefficients under the sum of squared error losses in a hierarchical linear model, we propose the hierarchical Bayes estimator of a vector of unknown regression coefficients in a hierarchical linear model, and then prove the admissibility of this estimator using Blyth's (196\51) method.

  • PDF

Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology (NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화)

  • Pan, Yichen;Kim, Jaesoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

Development of Regression Models Resolving High-Dimensional Data and Multicollinearity Problem for Heavy Rain Damage Data (호우피해자료에서의 고차원 자료 및 다중공선성 문제를 해소한 회귀모형 개발)

  • Kim, Jeonghwan;Park, Jihyun;Choi, Changhyun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.801-808
    • /
    • 2018
  • The learning of the linear regression model is stable on the assumption that the sample size is sufficiently larger than the number of explanatory variables and there is no serious multicollinearity between explanatory variables. In this study, we investigated the difficulty of model learning when the assumption was violated by analyzing a real heavy rain damage data and we proposed to use a principal component regression model or a ridge regression model after integrating data to overcome the difficulty. We evaluated the predictive performance of the proposed models by using the test data independent from the training data, and confirmed that the proposed methods showed better predictive performances than the linear regression model.

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • 이재하;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF