• Title/Summary/Keyword: linear projection

Search Result 238, Processing Time 0.025 seconds

Linear Interpolation Transition of Character Animation for Immediate 3D Response to User Motion

  • Lim, Sooyeon
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The purpose of this research is to study methods for performing transition that have visual representation of corresponding animations with no bounce in subsequently recognized user information when attempting to interact with a virtual 3D character in real-time using user motion. If the transitions of the animation are needed owing to a variety of external environments, continuous recognition of user information is required to correspond to the motion. The proposed method includes linear interpolation of the transition using cross-fades and blending techniques. The normalized playing time of the source animation was utilized for automatically calculating the transition interpolation length of the target animation and also as the criteria in selecting the crossfades and blending techniques. In particular, in the case of blending, the weighting value based on the degree of similarity between two animations is used as a blending parameter. Accordingly, transitions for visually excellent animation are performed on interactive holographic projection systems.

A New Linear Explicit Camera Calibration Method (새로운 선형의 외형적 카메라 보정 기법)

  • Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.66-71
    • /
    • 2014
  • Vision is the most important sensing capability for both men and sensory smart machines, such as intelligent robots. Sensed real 3D world and its 2D camera image can be related mathematically by a process called camera calibration. In this paper, we present a novel linear solution of camera calibration. Unlike most existing linear calibration methods, the proposed technique of this paper can identify camera parameters explicitly. Through the step-by-step procedure of the proposed method, the real physical elements of the perspective projection transformation matrix between 3D points and the corresponding 2D image points can be identified. This explicit solution will be useful for many practical 3D sensing applications including robotics. We verified the proposed method by using various cameras of different conditions.

On visualization of solutions of the linear Programming (선형계획법의 해의 이동에 관한 시각화)

  • 이상욱;임성묵;박순달
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • This paper deals with the visualization method of solutions of the linear programming Problem. We used the revised simplex method for the LP algorithm. To represent the solutions at each iteration, we need the informations of feasible legion and animated effect of solutions. For the visualization in high dimension space, we used the method of Projection to the three dimensions if the decision variable vector is over three dimensions, and we studied the technique of preserving original Polyhedral information such as the number of vertices. In addtion, we studied the method of visualizing unbounded feasible region and the adjacency relationship of the vortices welch is Indispensable to cisualize feasible legion.

Sensitivity Analysis and Optimal design for the Elasto-plastic buckling of Vehicle Structures (차체구조물의 탄소성좌굴에 관한 민감도해석과 최적설계)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.106-112
    • /
    • 1998
  • Experience and experiments show that in many cases the buckling limit is reached at a much smaller load level than is predicted by linear buckling analysis. In this paper, it is considered linear and nonlinear of plane vehicle structure and estimates design sensitivity of the cross sectional area that is composed plane vehicle structure and performs optimal design. It compares linear vehicle structure with nonlinear vehicle structure for optima design result that is selected constraint condition of buckling load.

  • PDF

New Learning Environment of Linear Algebra in Korea

  • Lee Sang-Gu;Han Yoonmee
    • Research in Mathematical Education
    • /
    • v.9 no.1 s.21
    • /
    • pp.59-68
    • /
    • 2005
  • We are introducing a new learning environment for linear algebra at Sungkyunkwan University, and this is changing our teaching methods. Korea's e-Campus Vision 2007 is a program begun in 2003, to equip lecture rooms with projection equipment, View cam, tablet PC and internet D-base. Now our linear algebra classes at Sungkyunkwan University can be taught in a modem learning environment. Lectures can easily being recorded and students can review them right after class. At Sungkyunkwan University almost $100\%$ of all large and medium size lecture rooms have been remodeled by Mar. 2005 and are in use. We introduce this system in detail and how this learning environment changed our teaching method. Analysis of the positive effect will be added.

  • PDF

A robustness enhancement of adaptive control system by improvement of parameter estimation method. (매개변수 추정 방법 개선에 의한 적응 제어 시스템의 견실성 향상)

  • Choi, Chong-Ho;Lhe, Ha-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.144-147
    • /
    • 1987
  • An adaptive control algorithm for a plant with unmodelled dynamics is proposed. The upper bounds of the output due to the unmodelled dynamics and measurement noise is assumed to be known. Linear programming is used in estimating the bounds of plant parameters. Projection type algorithm is used in estimating the plant parameter with these bounds. This algorithm is nearly the same as those proposed by Kreisselmeier or Middleton except that the bounds are computed by linear programming. The stability of the proposed algorithm Can be proved in nearly the same way as that of Middleton. Simulation results show that the proposed algorithm gives better parameter convergence and smaller overshoot in the plant output than the algorithm without computing the bounds of plant parameters by linear programming.

  • PDF

THE INDEFINITE LANCZOS J-BIOTHOGONALIZATION ALGORITHM FOR SOLVING LARGE NON-J-SYMMETRIC LINEAR SYSTEMS

  • KAMALVAND, MOJTABA GHASEMI;ASIL, KOBRA NIAZI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.375-385
    • /
    • 2020
  • In this paper, a special indefinite inner product, named hyperbolic scalar product, is used and all acquired results have been raised and proved with the proviso that the space is equipped with this indefinite scalar product. The main objective is to be introduced and applied an indefinite oblique projection method, called Indefinite Lanczos J-biorthogonalizatiom process, which in addition to building a pair of J-biorthogonal bases for two used Krylov subspaces, leads to the introduction of a process for solving large non-J-symmetric linear systems, i.e., Indefinite two-sided Lanczos Algorithm for Linear systems.

Calibration of Omnidirectional Camera by Considering Inlier Distribution (인라이어 분포를 이용한 전방향 카메라의 보정)

  • Hong, Hyun-Ki;Hwang, Yong-Ho
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

  • PDF

Bilateral Diagonal 2DLDA Method for Human Face Recognition (얼굴 인식을 위한 쌍대각 2DLDA 방법)

  • Kim, Young-Gil;Song, Young-Jun;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.648-654
    • /
    • 2009
  • In this paper, a method called bilateral diagonal 2DLDA is proposed for face recognition. Two methods called Dia2DPCA and Dia2DLDA were suggested to reserve the correlations between the variations in the rows and columns of diagonal images. However, these methods work in the row direction of these images. A row-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the column variation of alternative diagonal face images. In addition, column-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the row variation in diagonal images. A bilateral projection scheme was applied using left and right multiplying projection matrices. As a result, the dimension of the feature matrix and computation time can be reduced. Experiments carried out on an ORL face database show that the proposed method with three different distance measures, namely, Frobenius, Yang and AMD, is more accurate than some methods, such as 2DPCA, B2DPCA, 2DLDA, etc.

Statistical Analysis of Projection-Based Face Recognition Algorithms (투사에 기초한 얼굴 인식 알고리즘들의 통계적 분석)

  • 문현준;백순화;전병민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.717-725
    • /
    • 2000
  • Within the last several years, there has been a large number of algorithms developed for face recognition. The majority of these algorithms have been view- and projection-based algorithms. Our definition of projection is not restricted to projecting the image onto an orthogonal basis the definition is expansive and includes a general class of linear transformation of the image pixel values. The class includes correlation, principal component analysis, clustering, gray scale projection, and matching pursuit filters. In this paper, we perform a detailed analysis of this class of algorithms by evaluating them on the FERET database of facial images. In our experiments, a projection-based algorithms consists of three steps. The first step is done off-line and determines the new basis for the images. The bases is either set by the algorithm designer or is learned from a training set. The last two steps are on-line and perform the recognition. The second step projects an image onto the new basis and the third step recognizes a face in an with a nearest neighbor classifier. The classification is performed in the projection space. Most evaluation methods report algorithm performance on a single gallery. This does not fully capture algorithm performance. In our study, we construct set of independent galleries. This allows us to see how individual algorithm performance varies over different galleries. In addition, we report on the relative performance of the algorithms over the different galleries.

  • PDF