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ABSTRACT

Within the last several years, there has been a large number of algorithms developed for face recognition. The
majority of these algorithms have been view- and projection-based algorithms.

Our definition of projection is not restricted to projecting the image onto an orthogonal basis; the definition is
expansive and includes a general class of linear transformation of the image pixel values.

The class includes correlation, principal component analysis, clustering, gray scale projection, and matching
pursuit filters. In this paper, we perform a detailed analysis of this class of algorithms by evaluating them on the
FERET database of facial images. In our experiments, a projection-based algorithms consists of three steps. The
first step is done off-line and determines the new basis for the images. The bases is either set by the algorithm
designer or is learned from a training set. The last two steps are on-line and perform the recognition. The second
step projects an image onto the new basis and the third step recognizes a face in an with a nearest neighbor
classifier.

The classification is performed in the projection space. Most evaluation methods report algorithm
performance on a single gallery. This does not fully capture algorithm performance. In our study, we construct
set of independent galleries. This allows us to see how individual algorithm performance varies over different

galleries. In addition, we report on the relative performance of the algorithms over the different galleries.
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I. Introduction

The development of evaluation procedures for
algorithms is starting to become an accepted
practice in computer vision. One of the reasons is
that evaluation procedures offer a way to assess
competing performance claims. For one be able to
make a fair assessment of these claims, it is
necessary that the underlying assumptions of the
evaluation procedure be clearly stated, and that
the testing and scoring protocols are described.
From this, a statistical model for comparing
algorithms can be formulated.

For any given computer vision problem, there
are numerous algorithms designed to solve it. The
design of each algorithm is based on a set of
decisions and assumptions. Because of these
decisions and assumptions, it may mnot be
appropriate to apply a particular test to an
algorithm. The underlying test assumptions for
scoring protocol are one of the criteria for
determining if an evaluation procedure s
appropriate for a particular algorithm.

The FERET database has fulfilled the data
requirements for both development and testing,
becoming the de facto standard for face
recognition. (5,6] . The most recent of these
procedures was the Sept96 FERET test, which
provided a robust and comprehensive evaluation
of face recognition algorithms. The success of the
Sept96 FERET test was based on a few design
assumptions from which a statistical model could
be formulated. In this paper, we state these
assumptions, present the resulting statistical model,
and use it to assess the performance of
projection-based algorithms. The primary goal of
the Sept96 FERET test was to obtain an accurate
assessment of the performance of face recognition
algorithms on still images. To get this assessment,
the evaluation methodology needed to be robust
and comprehensive. To achieve this, scores had to
be computed for a large range of galleries and
probe sets. This led to the following design
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principles: (1) algorithms could not be trained
during testing, (2) each facial image was treated
as an unique face, and (3) the similarity score
between a probe and a gallery image is a
function of only those two images. The gallery is
the set of known individuals. An image of an
unknown face presented to the algorithm is called
a probe, and the collection of probes is called the
probe set.

Projection-based  algorithms, the dominant
approach to face recognition, include correlation,
principal component analysis, clustering, gray-scale
projection, and matching pursuit filters. The
structure of these algorithms is amenable to a
comprehensive evaluation procedure.

In this paper, an algorithm is projection-based
if it projects the pixel intensity value onto a new
basis, which need not be orthogonal. The original
image is the primal space, where each pixel is a
dimension; i.e., an m x n image is represented as
a point & R™" .

A projection-based algorithm consists of three
steps. The first step is done off-line and
determines the new basis for a facial image. The
basis is either set by the algorithm designer or
learned from a training set. The remaining steps
are on-line and identify a face. The second step
projects a facial image onto the new basis. The
third step identifies a face wusing a nearest
neighbor classifier in the projection space. (A
more general definition of projection-based
algorithms would allow a larger class of
classifiers.)

II. Testing Principles

To obtain a robust comparison of algorithms, it
is necessary to calculate performance on a large
number of galleries and probe sets. It is not
practical to have an evaluation methodology that
consists of a large number of separate galleries
and probe sets. To allow scoring on multiple
gallery and probe sets, we have to adopt an
appropriate protocol. In the new protocol, an
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algorithm is given two sets of images: the target
set and the gquery set. We introduce this
terminology to distinguish these sets from the
gallery and probe sets that are used in computing
performance statistics. The target set is given to
the algorithm as the set of known facial images.
The images in the query set are the unknown
facial images to be identified. For each image

g, in the query set Q, an algorithm reports the
similarity s, (k) between ¢, and each image ¢,
in the target set T. The key property, which
allows for greater flexibility in scoring, is that for
any two images s, and ¢, , we know s (k).
(In fact, designations of which set is the target
and which is the query are arbitrary. By
reformatting the output, we can change the roles
of the target and query sets.)

From the output files, algorithm performance
can be computed for virtual galleries and probe
sets. A gallery G is a virtual gallery if G is a
proper subset of the target set, ie, G < T .
Similarly, P is a virtual probe set if P < Q. For
a given gallery G and probe set P , the
performance scores are computed by examination
of the similarity measures s, (k) such that ¢,

€ Pand ¢, € G

The score  protocol allows  for  the
implementation of the design assumptions and
requirements. The first requirement is that training
is before beginning the test. This forces each
algorithm to have general representations for
faces, not representations tuned to a specific
gallery. Without this condition, virtual galleries
would not be possible which allow for many
different galleries to be constructed from a single
target set.

For the  algorithms to  have  general
representations for faces, they must be gallery
(class) insensitive, such as normalized correlation
and principal component analysis (PCA). An
algorithm is class sensitive if the representation is
tuned to a specific gallery.

Virtual galleries and probe sets allow for an

algorithm to be evaluated on different images of

the same person, if more than one image of that
person is placed in the target set. If such images
are marked as the same person, then the
algorithms being tested can use the information in
the evaluation process. However, this would
defeats the purpose of the virtual galleries. To
avoid this happening, we require that each image
in the target set be treated as a unique face. (In
practice, this condition is enforced by giving
every image in the target and query set a unique
random identification.)

The remaining criterion for constructing virtual
galleries and probe sets is that the similarity score
between target and query images is a function of
only those two images. If this is not the case,
then all the images that contributed to s, (k)
would have to be every gallery and probe set that
contain f, and g, This would place a
significant restriction on the virtual galleries and

probe sets that could be generated.

. Statistical Model

It was shown in Phillips er al. [S] that
changing the gallery and probes changes absolute
and relative performance of face recognition
algorithms. Thus, it is necessary to measure the
performance on a collection of galleries and probe
sets. From these, score statistics can be computed.
To be able to make informed statistical choices, it
necessary to state the gallery population from the
virtual galleries sampled.

Statistics are computed from a sample of virtual
galleries G, draw from a population of

galleries G*. The galleries in G all have a
common property, e.g., all galleries of size 200.
Statistical decisions and conclusions are made
over G*. To score an algorithm, both the gallery
and probe set need to be specified. We assume
that for each gallery, there is an unique probe set
P, , and we do not need to explicitly state P,
along with G, . This is illustrated in the
following example, which compares algorithms

A, and A, Performance of an algorithm
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Figure 1. Block Diagram of Projetion-based Face Recognition System

A
gallery G,

is measured with statistic 2 (, &, ) on
. The values of h(j, -) will have

different values for different G, and will have a

2

distribution F, over (", It is not practical to
explicitly calculate F,, therefore, we randomly
sample G* and estimate F, by F, . From the
empirical distribution F, , we estimate other
statistics of h and perform hypothesis testing
about the differences between algorithms.

IV. Experiments

We conducted two sets of experiments to show
how the statistical model presented in section 3
can contribute to the design and evaluation of
face recognition. In the first set, we performed
hypothesis  testing to estimate the relative
performance of three algorithms. In the second
set, we compared the effects of increasing the
size of the gallery on algorithm performance.

4.1 System modules

Our face recognition system consists of three
modules and each module is composed of a
sequence of steps (figure 1). The first module
normalize the input image. The goal of the
normalization is to transform the facial image into
a standard format that removes variations that can
affect recognition performance. Figure 2 shows
the input and output of some of the steps in the
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normalization module. The first step filters or
compresses the original image. The image is
filtered to remove high frequency noise in the
image. An image is compressed to save storage
space and reduce transmission time. The second
step places the face in a standard geometric
position by rotating, scaling, and translating the
center of eyes to standard locations. The goal of
this step is to remove variations in size,
orientation, and location of the face. The third
step masks out background pixels, hair, and
clothes to remove unnecessary variations which
can interfere identification process. The fourth
module removes some of the variations in
illumination  between  images. Changes in
illumination are critical factors in algorithm
performance.

The second module performs the feature
extraction based on the training set which
produces a set of feature vectors. The third
module identifies the face from a normalized
image, and consists of two steps. The first step
projects the image onto the feature vectors. The
critical parameter in this step is the subset of
feature vectors that represent the face space. The
second step recognizes faces wusing a nearest
neighbor classifier. The critical design decision in
this step is the similarity measure in the classifier.
We have investigated performance results using
L, distance, L, distance, angle between feature

vectors, Mahalanobis distance [4]. Additionally,
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Figure 2. Input and output of several steps of the normalization module.

Mahalanobis distance was combined with L,
L,, and angle between feature vectors mentioned

above.

All the algorithms were run on images from
the FERET database of facial images using the
Sept96 FERET evaluation protocol [2, 5]. The
target set consisted of 3816 images and the query
set consisted of 3323 images. In all the images,
the eyes were manually located. Using the
location of the eyes, the faces were translated,
rotated, and scaled into a standard position. Once
in the standard position, the background, hair,

neck, and clothes were masked (figure 2).

4.2 Test Design

From the target and query sets, we evaluated
the algorithms of two categories of images. The
first is the fb image. When the FERET database
was acquired, two frontal images of each person
were taken within five minutes under the same
lighting conditions. One of these images is called
the fa image and is in the gallery. The remaining
image is the fb image, which is placed in the
probe set. The fb test is a baseline test that
evaluates the ability of an algorithm to recognize
faces taken very close in time. The second
category is the duplicate images. An image is a
duplicate of a person in the gallery, if it was
taken on a different day or under different
circumstances than the gallery image. The FERET
database contains images of people where the
time between the first and most recent images is

over a year and a half.

To demonstrate the statistical model, we ran the
Sept96 FERET protocol on variations of
normalized correlation and PCA algorithms [3].
After the images were transformed into a standard
position, they went through a preprocessing step.
We  experimented  with  three types of
preprocessing: (1) normalizing the images to have
mean zero and unit variance, (2) histogram
equalization, and (3) histogram equalization
followed by normalization.

The recognition algorithms first projected the
preprocessed image onto a new basis, then
recognizes by the nearest neighbor classifier. PCA
projects the image on an orthogonal basis that
minimizes the variance in the training set [7]. In
our implementation, the training set consisted of
500 images. We used the new basis with the first
200 eigenvectors. Normalized correlation performs
recognition in the primal space (the images are
not projected onto a new basis). For the nearest
neighbor classifier, the L, and L, distances
and the angle between vectors have been used for
the PCA algorithm. For normalized correlation,
the angle between vectors and the L, metric are
equivalent.

The most common method of evaluating face
recognition algorithms is to measure performance
of algorithms on a single gallery and probe set.
Since performance scores vary with the gallery
and probe set, it is not possible to tell from a
single score if the observed performance is
average, optimist, or pessimistic. To address this
issue, in the first set of experiments, we compared

721



R EAI 3| =5 "00-5 Vol.25 NoSA

| ——

° il " |_||_||—1

Valiock h

(@)

[ ——
|

L

as 45 S5
Valiecfh

®

e

Figure 3. Histogram of h for 100 Galleries of size 200. The statistic h is the fraction of probes correctly identified.
(a) Histogram for fb probe sets. (b) Histogram for duplicate probe sets.

the performance of three algorithms over 100
galleries.

The gallery population G* consisted of
galleries of 200 individuals with one frontal
image per person. From G* , we randomly
generated 100  galleries G, and measured
performance against two probe sets. The first
probe set consisted of the fb images and the
second consisted of duplicate probes. We
measured performance as the fraction of probes
that were correctly identified, the #& statistic.
Figure 3 shows a histogram of % over the G, s
for fb and duplicate probe sets. The statistic h
was computed for the PCA algorithm with

normalized preprocessing and the L, classifier.

The algorithms that we compare are (1) PCA
with  histogram equalization and normalized
preprocessing, (2) PCA with histogram equali-
zation  preprocessing, and (3) normalized
correlation (which implicitly includes normalized
preprocessing). The classifier for all the
algorithms was the L, classifierr We did a
pair-wise comparison of all three methods. The
problems were formulated as a hypothesis testing
problem. The null hypothesis H, was that the
empirical distributions were equal. We used the
bootstrap permutation test (Efron and Tibshirani,
chap. 15 [1]) comparing the differences of the
sample means of h for each algorithm. Table 1
reports the sample means of # and the achieved
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significance level (ASL) of the tests. We can
reject H, with a level o, usually 0.05 or 0.01,
if the ASL is less than o. Based on the
permutation test, we cannot reject that there is
any performance difference between histogram
equalization and combining normalization and
histogram equalization. However, we can conclude
that the performance of normalization by itself is
different from the other two methods.

The above experiment examined algorithm
performance for galleries of size 200. One of the
concerns in face recognition is the effects on
performance as the size of the gallery increases.
To study this effect, we randomly generated
galleries of size 200, 400, 600, and 800. For each
gallery size, we generated 100 galleries and
scored against the fb and duplicate probe sets.
The scores were calculated using a PCA
algorithm with histogram equalization preproce-
ssing and the L, metric for recognition. The
scores are tabulated as cumulative match scores
for which computation is quite simple. Let p be
the size of a probe set and R, the number
probes ‘that the correct answer is in the top k.
The fraction reported is m, = R,/p.

The results are presented in a graph, with & on
the horizontal axis and m, on the vertical axis.
The m, scores report performance for a single
gallery and probe set. To summarize performance
for a sample population, we average the
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Figure 4. Average cumulative rank scores for galleries of size 200, 400, 600, 800. The average was computed from
100 galleries for each size gallery. (a) Scores for fb probe sets. (b) Scores for duplicate probe sets.

cumulative match scores. If m! = R,/p for G, ,

then the average rank &k score :n =
k

Tl\f 2 mi. The curve

cumulative match scores for an algorithm. Figure

~)is the average
m

4 reports the average cumulative match scores for
galleries of size 200, 400, 600, and 800, where N
= 100.

The average cumulative score reports perfor-
mance as a function of absolute rank. When
comparing galleries of different sizes, it is
insightful to compare relative performance of
galleries. In relative performance, we measure the
fraction of probes that are in the top 0%. The

~

average percent score for % is m
0

. Figure 5 reports the results from
1 en00)

figure 4 as average cumulative percent scores.
The graph of the average cumulative percent
scores in figure 5 are very close in the value.
This raises the hypothesis that distributions of #,
are the same for the different algorithms, where
h, is the fraction of probes that in the top 0% .
To test this hypothesis, we performed all
pair-wise comparisons between different-sized
galleries. We chose the null hypothesis to be that
the distributions for s were equal for all
gallery sizes. We performed the hypothesis testing
with the bootstrap permutation test on the means
of hy . Table 2 reports ASL for all the tests

conducted. The results show that in all cases, the

null hypothesis cannot be rejected. We repeated
the procedure for 4, , which produced the

same conclusion, we cannot reject the null

hypothesis.

Table 1. Hypothesis testing between h(a) for fb probe
sets and (b) for duplicate probe sets, using the
permutation test. The null hypothesis is that
the distributions of h(j) are equal. We report
ASL each pair-wise comparison of the
algorithms and the mean of h(j) for each
algorithm. EF = eigenface, Hist = Histogram
Equalization, NMS = images have not been
normalized. In all algorithms the L, metric is

used.

EF Hist EF Hist(NMS) Correlation
EF Hist - 0.47 0.00
EF Hist(NMS) - - 0.00
Mean 0.96 0.96 0.98

(@

EF Hist EF HisttNMS) Correlation
EF Hist - 0.48 0.00
EF Hist(NMS) - - 0.00
Mean 0.74 0.73 0.67

®)

V. Conclusions

In this paper we have used statistical methods
to compare the performance of algorithms and the
effects of wusing different galleries.  This
comparison allowed us to make intelligent and
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Figure 5. The cumulative match scores in figure
4(b) rescaled so that the rank is a
percentage of the gallery.

informed decisions. We were able to perform the
tests based on a statistical model, and the
formulation was possible because we stated the
assumptions underlying the testing methodology.
This is the critical step in applying testing

methodologies to computer vision.

Table 2. Hypothesis testing comparing the distribution of
galleries of different sizes. The statistic h
selected was the percent of probes with ranked
in the top 5%. The algorithm, galleries, and
probe sets are the same as in figures 4 and 5.

Gallery Size
200 400 600 800
200 - 0.44 0.46 0.20
400 - - 043 0.31
600 - - - 0.32
Mean 0.78 0.78 0.78 0.79
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