• 제목/요약/키워드: linear prediction

검색결과 1,983건 처리시간 0.031초

CNN-LSTM Coupled Model for Prediction of Waterworks Operation Data

  • Cao, Kerang;Kim, Hangyung;Hwang, Chulhyun;Jung, Hoekyung
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1508-1520
    • /
    • 2018
  • In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.

Robust Speech Hash Function

  • Chen, Ning;Wan, Wanggen
    • ETRI Journal
    • /
    • 제32권2호
    • /
    • pp.345-347
    • /
    • 2010
  • In this letter, we present a new speech hash function based on the non-negative matrix factorization (NMF) of linear prediction coefficients (LPCs). First, linear prediction analysis is applied to the speech to obtain its LPCs, which represent the frequency shaping attributes of the vocal tract. Then, the NMF is performed on the LPCs to capture the speech's local feature, which is then used for hash vector generation. Experimental results demonstrate the effectiveness of the proposed hash function in terms of discrimination and robustness against various types of content preserving signal processing manipulations.

다채널 선형예측을 이용한 블라인드 적응 채널 추정 (Blind Adaptive Channel Estimation using Multichannel Linear Prediction)

  • 조주필;안경승;황지원
    • 한국멀티미디어학회논문지
    • /
    • 제6권1호
    • /
    • pp.114-120
    • /
    • 2003
  • 블라인드 채널 추정은 매우 중요한 문제이다 기존의 방법들은 대부분 고차통계를 이용한 방법들이었으나 최근에 안테나 어레이를 통과한 수신신호나 수신신호를 오버샘플링한 신호의 2차통계를 이용한 방법들에 관한 많은 연구가 진행되고 있다. 본 논문에서는 다채널 선형예측 방법을 이용한 블라인드 적응 채널 추정 방법을 제안하고 컴퓨터 모의실험을 통하여 제안한 방법과 기존의 방법의 성능을 비교 분석한다. 본 논문에서 제안한 방법은 기존의 방법들보다 우수한 성능을 보였으며 채널의 정확한 차수를 모르는 경우에도 우수한 성능을 보임을 확인하였다.

  • PDF

동적선형모형을 이용한 서울지역 3시간 간격 기온예보 (The 3-hour-interval prediction of ground-level temperature using Dynamic linear models in Seoul area)

  • 손건태;김성덕
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.213-222
    • /
    • 2002
  • 이 논문에서는 서울지역 기온에 대한 향후 48시간까지 3시간 간격 예보 모델 개발 결과이 다. 동적 변화패턴과 수치모델의 체계적 오차를 제거하기 위하여 동적 선형모형으로 적합하였으며 , 수치모델 예측치와 관측치를 입력 변수로 사용하였다. 동적 선형모형에 의한 예측모델은 수치모델의 체계적 오차를 성공적으로 제거하였으며, 예측 정확도를 향상시키고 있다.

Quantitative Structure Activity Relationship Prediction of Oral Bioavailabilities Using Support Vector Machine

  • Fatemi, Mohammad Hossein;Fadaei, Fatemeh
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.543-552
    • /
    • 2014
  • A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively. Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test, which produces the statistic of $Q^2_{SVM}=0.603$ and SPRESS = 7.902. Moreover, the chemical applicability domains of model were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM in prediction of oral bioavailability of drugs.

정상 및 심질환 소아의 청진음 분석에 관한 연구 (A Study on Stethoscope Signal Analysis for Normal and Heart-diseased Children)

  • 김동준
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.715-720
    • /
    • 2017
  • This study tries to analyze morphology and formant frequencies of linear prediction spectra of stethoscope sounds for heart diseased children. For this object, heart diseased stethoscope sounds were collected in the pediatrics of an university hospital. The collected signals were preprocessed and analyzed by the Burg algorithm, a kind of linear prediction analysis. The linear prediction spectra and the formant frequencies of the spectra for the stethoscope sounds for the normal and the diseased children are estimated and compared. The spectra showed outstanding differences in morphology and formant frequencies between the normal and the diseased children. Normal children showed relatively low frequency of F1(the first formant) and small negative slope from F1. VSD children revealed stiff slope change around F1 to F3. Spectra of ASD children is similar with the normal case, but have negative values of F3. F1-F2 difference of the functional murmur children were relatively large.

선형예측계수에 근거한 ART 네트워크를 이용한 심전도 신호 분류 (Classification of the ECG Beat Using ART Network Based on Linear Prediction Coefficient)

  • 박광리;이경중
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.228-231
    • /
    • 1997
  • In this paper, we designed an ART(Adaptive Resonance Theory) network based on LPC(Linear Prediction Coefficient) for classification of PVB (Premature Ventricular Beat: PVC, LBBB, RBBB). The procedure of proposed system consists of the error calculation, feature generation and processing of the ART network. The error is calculated after processing by linear prediction algorithm and the features of ART network or classification are obtained from the binary ata determined by threshold method. In conclusion, ART network has good performance in classification of PVB.

  • PDF

비선형모델링을 통한 온습도 바이어스 시험 중의 다층 세라믹축전기 수명 예측 (Failure Prediction of Multilayer Ceramic Capacitors (MLCCs) under Temperature-Humidity-Bias Testing Conditions Using Non-Linear Modeling)

  • 권대일
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.7-10
    • /
    • 2013
  • This study presents an approach to predict insulation resistance failure of multilayer ceramic capacitors (MLCCs) using non-linear modeling. A capacitance aging model created by non-linear modeling allowed for the prediction of insulation resistance failure. The MLCC data tested under temperature-humidity-bias testing conditions showed that a change in capacitance, when measured against a capacitance aging model, was able to provide a prediction of insulation resistance failure.

심음도 스펙트럼의 1, 2차 도함수를 이용한 형성음 주파수 추출 기술 (Formant Detection Technique for the Phonocardiogram Spectra Using the 1st and 2nd Derivatives)

  • 김동준
    • 전기학회논문지
    • /
    • 제64권11호
    • /
    • pp.1605-1610
    • /
    • 2015
  • This study describes a new method to analyze phonocardiogram acquired from electronic stethoscope. The method uses the formant frequencies of linear prediction spectrum of the phonocardiogram and proposes a novel method for formant detection using the smoothing and the first and second derivatives. For this, stethoscope sounds are acquired in university hospital. The stethoscope signals are preprocessed and analyzed by the Burg algorithm, a kind of linear prediction analysis. Based on the linear prediction spectra, the formant frequencies are estimated. The proposed method has shown better performance in formant frequency detection than the conventional peak picking method.

새로운 파괴예측 모델을 이용한 상수도 관의 최적 교체 (Optimal Pipe Replacement Analysis with a New Pipe Break Prediction Model)

  • 박수완
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.710-716
    • /
    • 2002
  • A General Pipe Break Prediction Model that incorporates linear and exponential models in its form is developed. The model is capable of fitting pipe break trends that have linear, exponential or in between of linear and exponential trend by using a weighting factor. The weighting factor is adjusted to obtain a best model that minimizes the sum of squared errors of the model. The model essentially plots a best curve (or a line) passing through "cumulative number of pipe breaks" versus "break times since installation of a pipe" data points. Therefore, it prevents over-predicting future number of pipe breaks compared to the conventional exponential model. The optimal replacement time equation is derived by using the Threshold Break Rate equation by Loganathan et al. (2002).