• Title/Summary/Keyword: linear parameter-varying systems

검색결과 91건 처리시간 0.033초

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

Fuzzy Linear Parameter Varying Modeling and Control of an Anti-Air Missile

  • Mehrabian, Ali Reza;Hashemi, Seyed Vahid
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.324-328
    • /
    • 2007
  • An analytical framework for fuzzy modeling and control of nonlinear systems using a set of linear models is presented. Fuzzy clustering is applied on the aerodynamic coefficients of a missile to obtain an optimal number of rules in a Tagaki-Sugeno fuzzy rule-set. Next, the obtained membership functions and rule-sets are applied to a set of linear optimal controllers towards extraction of a global controller. Reported simulations demonstrate the performance, stability, and robustness of the controller.

H$\infty$ controller design for input-saturated linear systems

  • Choi, Ki-Hoon;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.75.2-75
    • /
    • 2001
  • In this paper, we provide the technique of H$\infty$ controller design algorithm for input-saturated linear systems using a linear parameter varying(LPV) framework. The LPV controller with parameter dependent dynamic state feedback controller concept guarantees the asymtotic stability and H$\infty$ norm bound within prescribed level v using the saturation nonlinearity as scheduling parameters. Especially, the sufficient conditions for the existence of H$\infty$ controller are formulated in terms of linear matrix inequalities(LMIs) that can be solved very efficiently.

  • PDF

Controller Design for Input-Saturated Linear Systems

  • C., Doojin;P., PooGyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.126-126
    • /
    • 2000
  • In this paper, we provide an approach of controller synthesis for input-saturated linear systems by a linear parameter varying (LPV) framework. Using directly the saturation nonlinearity as scheduling parameters, we propose an LPV-stabilizer with parameter-dependent dynamic state-feedback controller concept. Especially, the synthesis conditions are formulated in terms of linear matrix inequalities (LMIs) that can be solved very efficiency.

  • PDF

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF

시변 불확실성을 가지는 선형 시스템을 위한 반복 제어 시스템의 설계 (Design of Repetitive Control System for Linear Systems with Time-Varying Uncertainties)

  • 정명진;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.13-18
    • /
    • 2005
  • This paper considers a design problem of the repetitive control system for linear systems with time-varying norm bounded uncertainties. Using the Lyapunov functional for time-delay systems, a sufficient condition ensuring robust stability of the repetitive control system is derived in terms of an algebraic Riccati inequality (ARI) or a linear matrix inequality (LMI). Based on the derived condition, we show that the repetitive controller design problem can be reformulated as an optimization problem with an LMI constraint on the free parameter.

Parameter Reduction in Digital Adaptive Flight Control System for Spaceplanes

  • Togasaki, Yoshihiro;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.995-1000
    • /
    • 2004
  • A digital adaptive flight control system is presented for a Japanese automatic landing flight experiment vehicle (ALFLEX). In previous adaptive control systems based on a linear-parameter-varying (LPV) form, the output behavior was excellent, while the behavior of the adjusted parameters was unsatisfactory. In the present study, to obtain a more appropriate parameter adjustment law, the relationship between the coefficient matrices in a continuous-time state equation and the coefficients of a pulse transfer function in a discrete system for conventional aircraft is investigated. As a result, it is revealed that the coefficients of the numerator can be treated as a linear function of dynamic pressure (linear-parameter-varying: LPV), while the coefficients of the denominator can be treated as constant (linear-time-invariant: LTI). From the above analysis, an improved parameter adjustment law is derived by reducing the number of the adjustment parameters. Simulation results also revealed both good output tracking and good parameter adjustment compared with the previous results.

  • PDF

상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어 (Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays)

  • 김종해
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.

고속 WALSH 변환에 의한 분포정수계의 최적제어 (Optimal Control of Distributed Parameter Systems Via Fast WALSH Transform)

  • 김태훈;김진태;이승;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권10호
    • /
    • pp.464-472
    • /
    • 2001
  • This study uses distributed parameter systems as the spatial discretization technique, modelling in lumped parameter systems, and applies fast WALSH transform and the Picard's iteration method to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In exercising optimal control of distributed parameter systems, excellent consequences are found without using the existing decentralized control or hierarchical control method. This study will help apply to linear time-varying systems and non-linear systems. Further research on algorithm will be required to solve the problems of convergence in case of numerous applicable intervals.

  • PDF

변수 불확실성과 시변 시간지연을 가지는 특이시스템의 지연 종속 강인 비약성 안정화 (Delay-dependent Robust and Non-fragile Stabilization for Descriptor Systems with Parameter Uncertainties and Time-varying Delays)

  • 김종해
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1854-1860
    • /
    • 2008
  • In this paper, we deal with the problem of delay-dependent robust and non-fragile stabilization for descriptor systems with parameter uncertainties and time-varying delays on the basis of strict LMI(linear matrix inequality) technique. Also, the considering controller is composed of multiplicative uncertainty. The delay-dependent robust and non-fragile stability criterion without semi-definite condition and decomposition of system matrices is obtained. Based on the criterion, the problem is solved via state feedback controller, which guarantees that the resultant closed-loop system is regular, impulse free and stable in spite of all admissible parameter uncertainties, time-varying delays, and controller fragility. Numerical examples are presented to demonstrate the effectiveness of the proposed method.