• Title/Summary/Keyword: linear noise

Search Result 1,655, Processing Time 0.024 seconds

Linear-Impact Behaviour of PWR Fuel Assembly (시간적분법을 이용한 경수로 핵연료집합체의 선형충격 거동해석)

  • Yim, J.S.;Sohn, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.627-632
    • /
    • 2000
  • A finite element model for the transient dynamic analysis of a PWR fuel assembly was developed and programmed as a name of DAMASS. The Newmark time integration method was used to solve the governing equation of motion. Results of the program was compared with those of ANSYS in terms of displacement and impact forces to show the validity of the model. Up to now it has capability of solving the linear impact of FA(s) and it will be extended to the non-linear analysis of a FA in the future.

  • PDF

Nonlinear Analysis of Beam Vibration with Impact (충격성분을 갖는 보의 진동에 대한 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.455-460
    • /
    • 2000
  • Impact occurs when the vibration amplitude of a mechanical component exceeds a given clearance size. Examples of these mechanical systems include impact dampers, gears, link mechanism, rotor rub, and so on. The vibration due to impact has strong non-linear characteristics, which cannot be predicted by usual linear analysis. The designs of mechanical systems with impacts should be done on the basis of overall dynamic characteristics of the systems. In this paper, the nonlinear behaviors of a beam with a periodically moving support and a rigid stop are investigated numerically and experimentally. The beam vibration with impact is modeled by the equations of motion containing piecewise linear restoring forces and by the coefficient of restitution, respectively. Experimental and numerical results show jump phenomena and higher-harmonic vibrations. The effects between the increase of stiffness during impact and the coefficient of restitution are investigated through the comparison of the experimental and numerical results.

  • PDF

Micro-scale Vibration Phenomena in a Linear Motion Guide Having Rolling Elements (구름 요소를 사용하는 LM 가이드에서의 마이크로스케일 진동현상#)

  • 이용섭;최재석;유정훈;이동진;이석원;김윤영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1029-1034
    • /
    • 2004
  • Linear motion ( LM) guides having rolling elements have been used to position precision machines accurately. For ultra-accurate Positioning control of Precision machines, the understanding of the dynamic behavior of the LM guide at the macro and/or micro scales is most critical, but the research on this subject is rare. The objective of the present research is to investigate the vibration phenomena of the LM guide where balls are used as the rolling elements. Several experiments show the nonlinear characteristics of the LM guide such as hysteresis behavior and force-dependent natural frequencies phenomena.

A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구)

  • Song, KeunWoong;Choi, JongSoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

Development of Subwoofer for Car Audio System (자동차 오디오용 서브우퍼 개발)

  • Park, Seok-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper, computational analysis and experiments of subwoofer for car audio speaker system were performed and discussed to analyze acoustical phenomena for subwoofer. Ported enclosure system with subwoofer were manufactured and provided for test and simulation purposes. Subwoofer with single voice coil and double voice coil were identified by linear and nonlinear parameter identification method for loudspeaker parameters. For high power inputs to subwoofer, sound pressure levels were compared according to input powers with linear and nonlinear loudspeaker models. For subwoofer system with high power nonlinear speaker model was showed to be adequate to describe the behaviour of loudspeaker.

  • PDF

Magentostrictive self-moving cell linear motor for displacement control with large force and high resolution (대변위-고정밀 위치제어를 위한 자기변형 self-moving cell 선형모터)

  • Doo, Jae-Kyun;Kim, Jae-Hwan;Choi, Seung-Bok;Park, Hong-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.249-255
    • /
    • 2000
  • The design and test of an magnetostrictive linear motor(MLM) that operates based on self-moving cell concept is presented. The moving cell is composed of Terfenol-D linear actuator and a ring structure, and a cell train is constructed by connecting two cells in series. Since this motor uses the stroke of Terfenol-D actuators and friction force of the cells, it can essentially produce long stroke and large force. The overall performance of the MLM was measured in terms of speed and force. The pushing force is directly related with the friction force. This work is a proof-of-concept stage and investigation is necessary for realistic application.

  • PDF

Psycho-acoustic evaluation of the indoor noise in cabins of a naval vessel using a back-propagation neural network algorithm

  • Han, Hyung-Suk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.374-385
    • /
    • 2012
  • The indoor noise of a ship is usually determined using the A-weighted sound pressure level. However, in order to better understand this phenomenon, evaluation parameters that more accurately reflect the human sense of hearing are required. To find the level of the satisfaction index of the noise inside a naval vessel such as "Loudness" and "Annoyance", psycho-acoustic evaluation of various sound recordings from the naval vessel was performed in a laboratory. The objective of this paper is to develop a single index of "Loudness" and "Annoyance" for noise inside a naval vessel according to a psycho-acoustic evaluation by using psychological responses such as Noise Rating (NR), Noise Criterion (NC), Room Criterion (RC), Preferred Speech Interference Level (PSIL) and loudness level. Additionally, in order to determine a single index of satisfaction for noise such as "Loudness" and "Annoyance", with respect to a human's sense of hearing, a back-propagation neural network is applied.

A Study on Phase-Noise and Jitter due to the Power Supply Noise of the CMOS Ring Oscillator (CMOS 링발진기의 전원 잡음에 의한 위상잡음과 Jitter 연구)

  • Park Se-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.298-302
    • /
    • 2006
  • Models for the phase noise and jitter of the ring oscillator with the power supply noise are suggested and verified by simulations. The power supply noise is converted into the phase-noise by the narrow band phase modulation. The phase-noise appears as sideband frequencies apart from the center frequency of the ring oscillator as much as the frequency of the power supply noise. A jitter model describing the linear relation of jitter with the amplitude of the power supply noise is suggested and verified by simulation.

A Spectral-spatial Cooperative Noise-evaluation Method for Hyperspectral Imaging

  • Zhou, Bing;Li, Bingxuan;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.530-539
    • /
    • 2020
  • Hyperspectral images feature a relatively narrow band and are easily disturbed by noise. Accurate estimation of the types and parameters of noise in hyperspectral images can provide prior knowledge for subsequent image processing. Existing hyperspectral-noise estimation methods often pay more attention to the use of spectral information while ignoring the spatial information of hyperspectral images. To evaluate the noise in hyperspectral images more accurately, we have proposed a spectral-spatial cooperative noise-evaluation method. First, the feature of spatial information was extracted by Gabor-filter and K-means algorithms. Then, texture edges were extracted by the Otsu threshold algorithm, and homogeneous image blocks were automatically separated. After that, signal and noise values for each pixel in homogeneous blocks were split with a multiple-linear-regression model. By experiments with both simulated and real hyperspectral images, the proposed method was demonstrated to be effective and accurate, and the composition of the hyperspectral image was verified.