• 제목/요약/키워드: linear motion error

검색결과 207건 처리시간 0.031초

고속 HMC 이송계의 운동 특성 평가 (Performance Assessment of Linear Motor for High Speed Machining Center)

  • 홍원표;강은구;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

600DPI용 플라스틱 f$\theta$렌즈가 실장된 Laser Scanning Unit 의 측정 및 평가 (Laser scanning unit with plastic f$\theta$ lenses featuring high resolution)

  • 임천석
    • 한국광학회지
    • /
    • 제10권5호
    • /
    • pp.364-368
    • /
    • 1999
  • 일반적으로 LSU(Laser Scanning Unit)는 LD모듈(Laser Diode, 콜리메이팅 렌즈, 슬릿), 실린더 렌즈 고속회전하는 PM(Polygon Mirror), f$\theta$렌즈와 같은 광부품들과 이들을 취부하는 Housing으로 구성되어져 있다. 먼저 본 논문에서는 당사에서 자체적으로 광설계된 LSU 시작품(시작(試作品)을 측정/평가하기 위해 평가항목들에 관해 살펴 보았다. 당사에서 시제작된 LSU의 특징은 LSU의 핵심부품인 f$\theta$렌즈가 2단가압형 저압사출방식으로 제작되었다는 것이다. LSU의 평가항목들은 BSH(Beam Scan Head)를 LMC(Linear Motion Controller)위에 장착해서 비교적 간단히 측정 할 수 있었고, 측정결과 600DPI(Dots Per Inch) 성능을 만족함을 확인할 수 있었다.

  • PDF

Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구 (Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System)

  • 양민양;홍원표
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가 (Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system)

  • 김동민;이동연;권대갑
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구 (A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System)

  • 황학수;이상규
    • 자원환경지질
    • /
    • 제31권1호
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation

  • Pakar, I.;Bayat, M.;Cveticanin, L.
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.453-461
    • /
    • 2018
  • In this paper, nonlinear vibrations of the unsymmetrical laminated composite beam (LCB) on a nonlinear elastic foundation are studied. The governing equation of the problem is derived by using Galerkin method. Two different end conditions are considered: the simple-simple and the clamped-clamped one. The Hamiltonian Approach (HA) method is adopted and applied for solving of the equation of motion. The advantage of the suggested method is that it does not need any linearization of the problem and the obtained approximate solution has a high accuracy. The method is used for frequency calculation. The frequency of the nonlinear system is compared with the frequency of the linear system. The influence of the parameters of the foundation nonlinearity on the frequency of vibration is considered. The differential equation of vibration is solved also numerically. The analytical and numerical results are compared and is concluded that the difference is negligible. In the paper the new method for error estimation of the analytical solution in comparison to the exact one is developed. The method is based on comparison of the calculation energy and the exact energy of the system. For certain numerical data the accuracy of the approximate frequency of vibration is determined by applying of the suggested method of error estimation. Finally, it has been indicated that the proposed Hamiltonian Approach gives enough accurate result.

자기 부상 방식 미세 운동 기구의 동적 모델링 (Dynamic Modeling of an Fine Positioner Using Magnetic Levitation)

  • 정광석;백윤수
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

유압실린더-토글 서보 메카니즘의 모델링 및 운동제어 (Modeling and Motion Control for Hydraulic Cylinder-Toggle Servomechanism)

  • 조승호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권3호
    • /
    • pp.21-26
    • /
    • 2013
  • This paper presents a robust motion tracking control of a cylinder-toggle servomechanism for injection molding machines. Virtual design model has been developed for a five-point type toggle mechanism. A sliding function is defined and combined with PID control to accommodate mismatches between the real plant and the linear model used. From tracking control simulations, it is shown that significant reduction in position tracking error is achieved with clamping force build-up through the use of proposed control scheme.

MSE 추정에 기반한 적응적인 시간적 공간적 비디오 디노이징 필터 (Video De-noising Using Adaptive Temporal and Spatial Filter Based on Mean Square Error Estimation)

  • 김창수;김종호;최윤식
    • 방송공학회논문지
    • /
    • 제17권6호
    • /
    • pp.1048-1060
    • /
    • 2012
  • 본 논문에서는 영상에 포함되어 있는 잡음을 효율적으로 제거하기 위해 원본 영상과 잡음이 포함된 영상 사이의 mean square error (MSE) 추정에 기반한 적응적인 시공간 디노이징 필터(Adaptive Temporal and Spatial De-noising Filter : ATSF)를 제안하였다. 제안하는 디노이징 필터는 잡음이 포함되어 있는 영상에 블록 단위로 적용되며, 시간적 필터인 Multi-Hypothesis Motion Compensated Filter (MHMCF)를 사용하고, 공간적 필터로는 bilateral filter를 사용하였다. 각각의 블록에 대해 시간적 필터와 공간적 필터 중에서 최적의 필터를 선택하기 위해서 잡음이 포함되지 않은 원본 영상과 잡음이 포함된 입력 영상 사이의 MSE를 추정하는 기법을 제안하였다. 디노이징 단계에서 원본 영상이 주어지지 않기 때문에 MSE를 추정하기 위해서, 본 논문에서는 MHMCF가 적용된 블록의 MSE를 수학적으로 예측하고, bilateral filter가 적용된 블록의 MSE를 통계적 선형 모델을 통해 예측하였다. 이렇게 예측된 MSE를 비교하여 더 작은 MSE를 갖는 필터를 선택적으로 매 단위 블록마다 적용하게 된다. 제안된 방법은 시간적 필터와 공간적 필터를 적응적으로 적용함으로써 기존의 디노이징 방법에 비해 객관적 화질 뿐만 아니라 주관적인 화질에서 우수한 성능을 보여준다.