• 제목/요약/키워드: linear energy transfer

검색결과 161건 처리시간 0.025초

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

산성용액 내에서${\alpha}-Fe_2O_3$의 용해에 대한 환원성 염의 효과 (Effect of Reductive Salts on Dissolution of ${\alpha}-Fe_2O_3$ in Acidic Solutions)

  • 이정익;권이묵
    • 대한화학회지
    • /
    • 제27권3호
    • /
    • pp.194-200
    • /
    • 1983
  • ${\alpha}-Fe_2O_3$의 HCl 또는 $H_2SO_4$에 의한 용해반응에 있어서 금속염의 첨가효과를 분광광도법과 중량법으로 검토하였다. 환원성 금속염은 현저한 반응촉진 효과를 보이나 비환원성 금속염은 부의 효과를 나타내었다. $FeCl_2$와 같은 환원성 금속염을 첨가한 경우에 ${\alpha}-Fe_2O_3$의 용해속도가 크게 촉진되는 것은 $Fe^{3+}$$Fe^{2+}$ 사이에 chloro-brige가 형성되어 전하이동이 일어나면서 ${\alpha}-Fe_2O_3$ 표면의 격자에너지를 감소시키기 때문인 것으로 추측된다. 이 전하이동으로 인한 ${\alpha}-Fe_2O_3$ 표면의 격자 에너지 변화가 반응의 활성화에너지 변화와 대응된다고 보면 약 0.36e의 부분전하가 $Fe^{3+}$ 쪽으로 옮겨간 것으로 계산되었다.

  • PDF

시분해 레이저 유도 백열법을 이용한 매연 입자 크기에 관한 수치적 연구 (Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII))

  • 이종호;김정용;정동수;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1022-1031
    • /
    • 2005
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to obtain an appropriate calibration curve for determining primary particle size by comparing the gated signal ratio and double-exponential curve fitting methods. Not only the effects of laser fluence and gas temperature on the cooling behavior but also heat transfer mechanisms of heated soot particle have been investigated. The second-order exponential curve fitting showed better agreements with the LII signals than the gated signal ratio method which was based on the lust-order exponential curve fit. And the temporal decay rate of the LII signal and primary particle size showed nearly linear relationship, which was little dependent on the laser fluence. And it also could be reconfirmed that vaporization was dominant process of heat loss during first loons after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.

증강 화학발광 기법을 이용한 horseradish peroxidase(HRP)의 검량 (Determination of Horseradish Peroxidase (HRP) using an Enhanced Chemiluminescence Assay)

  • 김원기;김근한;이승목
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.84-89
    • /
    • 2009
  • Our nation's water resources remain susceptible to contamination by phenolic agrichemicals. These compounds can be toxic to a variety of organisms including humans. Their disposal is restricted in many countries with strict limits for acceptable concentrations in drinking water. Enzyme-mediated in situ stabilization has been advocated as an approach for the treatment of phenolic compounds in soils and groundwater. This study reports the development of a new approach to quantify the activity of the HRP enzyme in aqueous systems. The method is based on the coupled processes of energy transfer and enhanced chemiluminescence using a luminol-$H_2O_2$-HRP system. In this study, the effects of solution pH, ionic strength and aqueous concentrations of HRP, $H_2O_2$ and enhancer were evaluated on the p-iodophenol-enhanced, HRP-catalyzed chemiluminescence reaction intensity in Tris-HCl buffer. All assay components were found to affect the maximum chemiluminescene intensity. The calibration curve for HRP showed the linear relationship with maximum light intensity.

Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2339-2344
    • /
    • 2011
  • Kinetic studies for the reactions of O,O-dimethyl Z-S-aryl phosphorothioates with X-pyridines have been carried out in dimethyl sulfoxide at 85.0 $^{\circ}C$. The Hammett and Br$\"{o}$nsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = H, while those for substituent Z variations in the leaving groups are linear. The negative sign of the cross-interaction constant (${\rho}_{XZ}$) implies that the reaction proceeds through a concerted mechanism for both the strongly and weakly basic pyridines. The magnitude of ${\rho}_{XZ}$ (= -0.35) for the strongly basic pyridines is greater than that (${\rho}_{XZ}$ = -0.15) for the weakly basic pyridines, indicating a change of the nucleophilic attacking direction from frontside for the strongly basic pyridines to backside for the weakly basic pyridines. The early transition state is proposed on the basis of the absence of positive deviations from both the Hammett and Br$\"{o}$nsted plots for the strong ${\pi}$-acceptor, X = 4-Ac, and small values of ${\rho}_{XZ}$ and ${\beta}_X$.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4304-4308
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-dimethyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at $85.0^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Br$\ddot{o}$nsted [log $k_2$ vs $pK_a$(X)] plots for substituent X variations in the nucleophiles are discrete with a break region between 4-Me and H, while the Hammett plots (log $k_2$ vs ${\sigma}_Z$) for substituent Z variations in the leaving groups are linear. The sign of the cross-interaction constant (${\rho}_{XZ}$) is positive for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ (= 2.54) value is observed with the weakly basic nucleophiles compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = 0.17). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a stepwise with a rate-limiting leaving group expulsion from the intermediate involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles.

압축된 방진고무의 강성 해석 (Stiffness Analysis of Compressed Rubber Components for Anti-Vibration)

  • 김국원;임종락;안태길
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.141-147
    • /
    • 1999
  • Optical disk technology with a laser beam for data recording and retrieval is one of the most promising route for high density information storage in multimedia era. As the storage density and data transfer rates are increased, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber components with complex shape and under pre-deformed state. In this paper, non-linear large deformations of a rubber mount for optical disk drive were investigated using the finite element method. A tension test of rubber material was performed, to calculate a strain energy function. According to the pre-deformed state, the variation of rubber mount stiffness were calculated and the reliability of numerical results were checked by compared with the measuring the deflection values. Also, the effects of the pre-deformed rubber mount on the system dynamic characteristics were investigated and the relation between the static stiffness variation of rubber mount and the natural frequence variation of system was discussed.

  • PDF

PHOSPHATE-DEFICIENCY REDUCES THE ELECTRON TRANSPORT CAPACITIES OF THYLAKOID MEMBRANES THROUGH LIMITING PHOTOSYSTEM II IN LEAVES OF CHINESE CABBAGE

  • Park, Youn-Il;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • 제1권2호
    • /
    • pp.95-105
    • /
    • 1994
  • Experiments were carried out to investigate whether P, deficiency in detached 25 mM mannose-feeding led to a decline of the photosynthetic electron transport rates through acidification of the thylakoid lumen. With increasing mannose-feeding time, the maximal CO2 exchange rates and the maximal quantum yields of photosynthesis decreased rapidly up to 6 h by 73% then with little decrease up to 12 h. The ATP/ADP ratio declined by 54% 6 h after the treatment and then recovered to the control level at 12 h. However, the NADPH/NADP~ ratio was not significantly altered by mannose treatment. Electron transport rates of thylakoid membranes isolated from 6 h treated leaves did not change, but they decreased by 30% in 12 h treated leaves. The quenching analysis of Chl fluorescence in mannose-treated leaves revealed that both the fraction of reduced plastoquinone and the degree of acidification of thylakoid lumen remained higher than those of the control. The reduction of PSI in mannose fed leaves was inhibited due to acidification of thylakoid lumen (high qE). The reduction of primary quinone acceptor of PSII was inhibited by mannose feeding. Mannose treatment decreased the efficiency of excitation energy capture by PSII. Fo quenching was induced when treated with mannose more than 6 h, and had a reverse linear correlation with (Fv)m/Fm ratio. These results suggest that Pi deficiency in Chinese cabbage leaves reduce photosynthetic electron transport rates by diminishing both PSII function and electron transfer from PSII to PSI through acidification ofthylakoid lumen, which in turn induce the modification of photosynthetic apparatus probably through protein (de)phosphorylation.

  • PDF

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.