• Title/Summary/Keyword: linear control algorithm

Search Result 1,107, Processing Time 0.037 seconds

A Study on Linear Matrix Inequalities Robust Active Suspension Control System Design Algorithm

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.105-109
    • /
    • 2008
  • A robust optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory is presented. The validity of the linear matrix inequalities robust control system design in active suspension system through the numerical examples is also investigated.

Improved Implementation Algorithm for Continuous-time RHC (연속형 RHC에 대한 개선된 구현 알고리즘)

  • Kim, Tae-Shin;Kim, Chang-You;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.755-760
    • /
    • 2005
  • This paper proposes an improved implementation algorithm for the continuous-time receding horizon control (RHC). The proposed algorithm has a feature that it has better control performance than the existing algorithm. Main idea of the proposed algorithm is that we can approximate the original RHC problem better by assuming the predicted input trajectory on the prediction horizon has a continuous form, which is constructed from linear interpolation of finite number of vectors. This, in turn, leads to improved control performance. We derive a predictor such that it takes linear interpolation into account and proposes the method by which we can express the cost exactly. Through simulation study fur an inverted pendulum, we illustrate that the proposed algorithm has the better control performance than the existing one.

Stable Tracking Control to a Non-linear Process Via Neural Network Model

  • Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.163-169
    • /
    • 2014
  • A stable neural network control scheme for unknown non-linear systems is developed in this paper. While the control variable is optimised to minimize the performance index, convergence of the index is guaranteed asymptotically stable by a Lyapnov control law. The optimization is achieved using a gradient descent searching algorithm and is consequently slow. A fast convergence algorithm using an adaptive learning rate is employed to speed up the convergence. Application of the stable control to a single input single output (SISO) non-linear system is simulated. The satisfactory control performance is obtained.

A learning control algorithm for the linear discrete system (선형 이산 시스템의 학습제어 알고리즘)

  • 박희재;조형석;현봉섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.326-331
    • /
    • 1988
  • In this paper, an iterative leaning control algorithm for the linear discrete system is proposed. Based upon the parameter estimation method, the learning for good tracking control is acqured through a sequence of repetitive operations. A series of simulation are performed to show the validity of this algorithm.

  • PDF

Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm (비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

A bit-rate control of MPEG-2 using linear average step quantization (선형 평균스텝 양자화를 사용한 MPEG-2 비트율 제어)

  • 이두열;이근영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.84-90
    • /
    • 1997
  • We proposed a new bit-rate control algorithm to improve MPEG-2 video software encoder. Bit-rate Control plays an improtant role in picture quality of MPEG-2 encoder. To achieve better encoding performance such as controlling picture quality and using bity properly, we proposed a MPEG-2 bit-rate control algorithm using linear average Step-Size. Using a benchmark Program, we compared our algorithm with MPEG-2 Test Model 5. Our proposed algorithm showed better Bit-Rate Control with respect to used bits, picture quality.

  • PDF

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF

Implementation of High Speed, Precise Position Control Algorithm for Linear Machine Drive System (선형 전동기 구동 시스템의 고속, 정밀 위치 제어 알고리즘의 구현)

  • 이유인;김준석;김용일
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.139-142
    • /
    • 1999
  • Recently, the application of the linear machine for industrial field is remarkable increased, especially for the gantry machine and machine tool system. In these application, high precise position control performance is essentially required in steady/transient state. This paper presents the generalized PID position control algorithm which have rare sensitivity to mass and disturbance. Through the experimental results, it is shown that the proposed algorithm have good performance for the linear machine drives in the steady state and transient state in spite of the load mass varing.

  • PDF

Path Control for NeuroMate Robot in a Skull Drilling System (두개골 천공을 위한 NeuroMate 로봇의 경로 제어)

  • Chung, Yun-Chan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.256-262
    • /
    • 2013
  • This paper presents a linear path control algorithm for NeuroMate robot in a skull drilling system. For the path control inverse kinematics of the robot is analyzed and a linear interpolation algorithm is presented. A geometric approach is used for solving inverse kinematic equations for the robot. Four feasible solutions are found through the approach. The approach gives geometric insights for selecting the best solution from the feasible solutions. The presented linear interpolation algorithm computes a next position considering current velocity and remaining distance to the target position. Presented algorithm is implemented and tested in a skull drilling system.