• Title/Summary/Keyword: linear compressive behavior

Search Result 85, Processing Time 0.022 seconds

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

Mohr-Coulomb Failure Criterion with Tensile Strength in Sand (모래에서 인장력을 고려한 Mohr-Coulomb 파괴규준)

  • Kim, Tae-Hyung;Lee, Yong-Su;Hwang, Woong-Ki;Kang, Ki-Min;Ahn, Yonug-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.963-971
    • /
    • 2008
  • Unsaturated soil mechanics has been often used to find out a cause of failure (tensile failure) of retaining walls and hill slopes containing sandy soils. Checking shear strength is a popular method by considering suction stress developed form pore water menisci among the grains and saturated pockets of pore water under negative pressure. Linear Mohr-Coulomb failure criterion is generally adopted as a failure criterion. However, depending on relative density, stress history, and the magnitude of stress, the failure behavior of sand may not follow linear M-C frictional behavior. For stress in the large compressive ranges, say from tens to hundreds of kPa, the linear M-C criterion is an adequate representation for the shear strength behavior of sand. However, less than tens of kPa, the M-C criterion often can not be accurately represented. Depending on failure criterion, the uniaxial tensile strength is different over 100% relative error. For sand behavior under small compression regimes, therefore, such as under low or zero gravity, or under undergoing tensile failure in the crest area of hill slopes or behind retaining walls, it is important to consider the non-linear behavior.

  • PDF

Effect of Stress on Current-Voltage Characteristics of ZnO Based Ceramics

  • Jung Ju-Yong;Kim Yeong-Cheol;Seo Hwa-Il;Chung Dong-Teak;Kim Young-Jung;Min Joon-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.1-4
    • /
    • 2005
  • The chemical composition and uniaxial compressive stress are varied to observe their effect on the current-voltage characteristics of ZnO based ceramics. The variation of chemical composition produces two kinds of ceramics showing ohmic and nonohmic current-voltage characteristics. The current at a fixed voltage increased with the increase of the compressive stress for both ohmic and nonohmic ceramics. Ceramics showing nonohmic behavior exhibit better reversible return of current-voltage curve when the applied compressive stress is removed from the ceramics than those showing ohmic behavior do. We found an appropriate chemical composition showing linear relation between current and stress at a fixed voltage. The ceramic materials with an appropriate chemical composition can be used as a potential sensing material in pressure sensors.

  • PDF

Analysis of Single-Walled Carbon Nanotube under Compression using Elastic Beam Model (탄성 보 모델을 이용한 탄소나노튜브의 압축거동해석)

  • Park, No-Jung;Chun, Yun-Hee;Park, Jae-Gyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.567-575
    • /
    • 2010
  • The mechanical properties of Carbon nanotube is superior such that it can be used in many areas of engineering field in the future, though the analysis of the mechanical behavior of nanotube is expensive due to its small size and uniqueness when the molecular dynamics or a generalized function theory is applied. To overcome these disadvantages, the force field between Carbon atoms can be substituted by structural members. In this study, main forces between atoms in Carbon nanotube are described by 0.1 nanometer length circular beams and linear behaviors under compression are investigated. The linear behavior is in good agreement with results by other methods. This method can be used in nonlinear analysis of nanotube when the beam elements are properly configured.

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.

Application of Mechanical Crack Model to Numerical Study of Rock Mass Behavior (암석거동의 수치해석적 연구를 위한 균열모형의 적용)

  • Park, Do-hyun;Jeon, Seok-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.72-85
    • /
    • 2000
  • Rock is a very complex and heterogeneous material, containing structural flaws due to geologic generation process. Because of those structural flaws, deformation and failure of rock when subjected to differential compressive stresses is non-linear. To simulate the non-linear behavior of rock, mechanical crack models, that is, sliding and shear crack models have been used in several studies. In those studies, non-linear stress-strain curves and various behaviors of rock including the changes of effective elastic moduli ($E_1$, $E_2$, ${\nu}_1$, ${\nu}_2$, $G_2$) due to crack growth were simulated (Kemeny, 1993; Jeon, 1996, 1998). Most of the studies have mainly focused on the verification of the mechanical crack model with relatively less attempt to apply it to practical purposes such as numerical analysis for underground and/or slope design. In this study, the validity of mechanical crack model was checked out by simulating the non-linear behavior of rock and consequently it was applied to a practical numerical analysis, finite element analysis commonly used.

  • PDF

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R.;Manoj Kumar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.287-299
    • /
    • 2023
  • This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.

A Study on Fatigue Damage Modelling in Cold Rolled Steel using X-ray Residual Stress (X선 잔류응력을 이용한 냉간압연강의 피로손상 모델링에 관한 연구)

  • Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.55-62
    • /
    • 1999
  • Cold rolled steel has much plastic strain in the material surface produced by manufacturing process. The strain causes the variation of surface residual stress, in which influences the fatigue behavior under repeated loading. As experimental results, it was confirmed that the behavior of residual stress ${\sigma}_r$, with cycle N consisted of three stages except stress amplitude near fatigue limit in SPCC steel. On the first stage compressive residual stress decreased rapidly, on the second stage gradually, and on the last stage slightly. The relation between ${\sigma}_r$, and log N appeared linear behavior except the early part of cycle ratio $N/N_f$. The average gradient of ${\sigma}_r$, with respect to log N seemed to take a constant value without initial cycle ratio. On the other hand, the $N_f$ line was regressed by the first-order polynomial equation on ${\sigma}_r-log\;N_f$ diagram. Therefore, this study showed that both the gradient of ${\sigma}_r$, with respect to log N and the $N_f$ line was useful in predicting the cycle ratio $N/N_f$.

  • PDF

A Study on the Compressive Properties of Seawater-absorbed Carbon-Epoxy Composites - Hydrostatic Pressure Effect (해수가 흡수된 Carbon-Epoxy 적층복합재의 압축특성에 대한 연구- 정수압력 영향)

  • Lee Ji Hoon;Rhee Kyong Yop;Kim Hyun ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.191-195
    • /
    • 2004
  • This study investigated the effect of deep-sea environment on the compressive characteristics of polymer matrix composite. The specimens used in the experiment were thick Carbon-Epoxy composites that were made from Carbon-Epoxy prepregs. The specimens were immersed into seawater for thirteen months. The seawater content at saturation was about 1.2% of the specimen weight. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. It was found that the compressive elastic modulus increased about 10% as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The modulus increased additional 2.3% as the pressure increased to 270 MPa. It was also found that compressive fracture strength and compressive fracture strain increased with pressure in a linear behavior. Compressive fracture strength increased 28% and compressive fracture strain increased 8.5% as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.