DOI QR코드

DOI QR Code

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads

압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구

  • Hongseob Oh (Department of Civil and Infrastructure Engineering, Gyeongsang National University)
  • 오홍섭 (경상국립대학교 건설시스템공학과 )
  • Received : 2024.04.08
  • Accepted : 2024.04.15
  • Published : 2024.06.30

Abstract

In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.

본 연구에서는 풍력타워 지지구조 연결부 1/12.5 축소모형 실험체의 압축거동을 실험적으로 분석하였다. 압축강도 140MPa의 고성능 시멘트계 그라우트를 연결부에 충전하였으며, 전단키 간격, 형상과 연결부 길이를 변수로 하여 실험을 수행하였다. 연결부 내의 전단키의 개수가 동일한 경우 연결부 길이보단 전단키의 간격이 작을수록 부착전단강도가 높게 나타났으며, 동일한 간격과 연결부 길이에서는 전단키의 높이가 높을수록 강도가 높게 나타났다. 또한 연결부 슬립량 1.0mm 내외까지 선형거동을 한 후 하중이 증가함에 따라 비선형 거동을 한후 7.0mm 내외의 슬립에서 최대 강도에 도달하는 것으로 나타났다. 전단키의 형상과 간격 등에 따라 강도가 증가함에 따라 파괴형태는 계면전단파괴에서 그라우트 파괴로 변화하는 것으로 나타났으며, 강섬유에 의해 취성적인 파괴는 발생하지 않는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 교통과학기술진흥원의 탄소 고분자 부식ZERO 철근대체재 기술개발 연구사업(21CFRP-C163399-01)의 지원에 수행되었습니다.

References

  1. American Petroleum Institute (2008), API RP14F: Recommendation of Electrical System for Offshore Production Platforms, 284. 
  2. Anders, S. (2007), Von der Fakultat fur Bauingenieurwesen und Geodasie der Gottfried Wilhelm, PhD Dissertation, Leibniz Universitat Hannover. 
  3. Atlantic Renewable Energy Corporation, AWS Scientific, Inc. (2004), New Jersey Offshore Wind Energy: Feasibility Study, New Jersey Board of Public Utilities, 236. 
  4. Det Norske Veritas (2011), Offshore Standard DNV-OS-J101, Design of Offshore Wind Turbine Structures, 213. 
  5. Espinosa, J. G. (2012), Design and Calculus of the Foundation Structure of an Offshore Monopile Wind Turbine, Universitat Polotecnica de Catalunya, 85. 
  6. EWEA (2011), Wind in our Sails, EWEA Offshore 2011, Amsterdam, 92. 
  7. IEC 61400, (2009), International Standard Wind turbines-Part 3: Design requirements for offshore wind turbines, International Electrotechnical Commission, 268. 
  8. Jonkman, J., Butterfield, S., Musial, W., and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development, NREL, 75. 
  9. Kang, S. T., Park, J. J., Ryu, G. S., and Kim, S. W. (2010), The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Performance Cementitious Composites(UHPCC) Journal of the Korea Institute for Structural Maintenance and Inspection, 14(5), 110-118 (in Korean with English abstract). 
  10. Kurian, V. J., Ganapathy, C. (2010), Monopile Foundations for Offshore Wind Turbines, International Conference on Sustainable Building and Infrastructure, ICSBI, Kuala Lumpur, Malaysia, 15-17. 
  11. Lee, B. Y. (2012), Strain-Hardening Cementitious Composites with Low Viscosity Suitable for Grouting Application, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(1), 55-63 (in Korean with English abstract). 
  12. Lee, J. H., and Park, C. G. (2011), Effect of Fiber Volume Fraction on Bond Properties of Structural Synthetic Fiber in Polypropylene Fiber Reinforced Cement Composites, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(4), 125-135 (in Korean with English abstract). 
  13. Lohaus, L., and Anders, S. (2006), Static and Fatigue behaviour of High-Performance Concrete in "Grouted Joints" for hybrid structures, Proceedings of the 2nd Int. fib Congress, Naples. 
  14. Lotsberg, I. (2010), Developments of Grouted Connections in Monopile Foundations, IABSE Seminar, Copenhagen. 
  15. Nedzzad Dedicc (2009), Analysis of Grouted Connection in Monopile Wind Turbine Foundations Subjected to Horizontal Load Transfer, Aalborg University. 
  16. NORSOK standard (2012), Design of Steel Structures Annex K Special Design Provisions for Jackets, 151-193. 
  17. Oh, H. S., Seo, G., Kim, S. H., Ko, S. J., and Lee, H. G. (2014), An Experimental Study on the Bonding Characteristic of Steel Tubular Joint Connection filled with Fiber Reinforced High Performance Cementeous Grout, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(6), 21-29 (in Korean with English abstract).