• Title/Summary/Keyword: linear and non-linear dynamic analysis

검색결과 399건 처리시간 0.024초

원자로내부구조물의 동적해석을 위한 비선형모델 (A Non-linear Model for Dynamic Analysis of Reactor Internals)

  • Myung-J.Jhun;Sang-G.Chang;Song, Heuy-G.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.165-172
    • /
    • 1993
  • A non-linear mathematical model has been developed for the dynamic analysis of the reactor internals. The model includes a lumped mass and stiffness with non-linear members such as gap-spring. As hydrodynamic couplings have also been considered in the model, the effect of fluid/structure interaction between internals components due to their immersion in a confining fluid can be studied for the dynamic response analysis. The reactor internals responses for seismic and pipe break excitations have been calculated for the case of with-and without-hydrodynamic couplings.

  • PDF

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.509-519
    • /
    • 2019
  • In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.

Analysis of impact response and damage in laminated composite cylindrical shells undergoing large deformations

  • Kumar, Surendra
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.349-364
    • /
    • 2010
  • The impact behaviour and the impact-induced damage in laminated composite cylindrical shell subjected to transverse impact by a foreign object are studied using three-dimensional non-linear transient dynamic finite element formulation. A layered version of 20 noded hexahedral element incorporating geometrical non-linearity is developed based on total Langragian approach. Non-linear system of equations resulting from non-linear strain displacement relation and non-linear contact loading are solved using Newton-Raphson incremental-iterative method. Some example problems of graphite/epoxy cylindrical shell panels are considered with variation of impactor and laminate parameters and influence of geometrical non-linear effect on the impact response and the resulting damage is investigated.

非線型 스프링과 線型감쇠를 가지는 動吸振器에 관한 硏究 (A study on the dynamic vibration absorber having non-linear spring and linear damper)

  • 김광식;안찬우
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.473-478
    • /
    • 1987
  • 본 연구에서는 Newton법에 의한 수치해석을 이용하여 감쇠를 가진 진동계의 최적고유진동수비와 최적감쇠비를 구했으며, 비선형동흡진기가 부착된 진동계의 운동 방정식을 유도하여 조화밸런스법에 의한 진폭비를 산출해서 진폭비에 대한 비선형성의 영향 및 경성스프링과 연성스프링의 특성을 규명하였다.

Seismic performance evaluation for steel MRF: non linear dynamic and static analyses

  • Calderoni, B.;Rinaldi, Z.
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.113-128
    • /
    • 2002
  • The performance of steel MRF with rigid connections, proportioned by adopting different capacity design criteria, is evaluated in order to highlight the effectiveness of static non-linear procedure in predicting the structural seismic behavior. In the framework of the performance-based design, some considerations are made on the basis of the results obtained by both dynamic time histories and push-over analyses, particularly with reference to the damage level and the structure ability to withstand a strong earthquake.

조화운동하는 기반상에서 작동하는 비선형 동흡진기의 동특성에 관한 연구 (A study on the dynamic characteristics of non-linear dynamic vibration absorber excited by harmonic ground motion)

  • 김광식;안찬우
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.131-136
    • /
    • 1988
  • 본 연구에서는 기반의 주기변위를 받는 주진동계에 비선형스프링과 선형 감쇠를 갖는 비선형동흡진기가 부착된 진동계의 운동방정식을 유도하여 조화바란스법 으로 지면에 대한 주진동계의 상대진폭의 진폭비를 산출하고 안정성해석을 하였으며, 비선형성의 영향과 스프링의 경.연성에 따르는 특성을 규명하였다.

압축된 고무재료의 정적 변형 해석과 동특성 예측 (Static Deformation Analysis and Dynamic Characteristics Predicton of Compressed Rubber Materials)

  • 김국원;임종락;손희기;안태길
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.472-476
    • /
    • 1999
  • The effect of static preload on the dynamic properties of rubber materials is rather important, especially when good isolation characteristics are required at high frequencies. However, there are still few papers for dynamic characteristics of compressed rubber components. It was demonstrated in reference (4) that for bonded rubber material of a cylindrical shape, a simplified theory equation between linear dynamic and nonlinear static behavior of rubber material was useful to predict their combined effects. This paper presents the second part of the study. It is confirmed that for the compressed rubber material, the stress can be factored into a function of frequency and a function of strain(stretch). The finite element methodis applied to analyze non-linear large deformation of rubber material and its results are compared with those of a simplified theory equation. The predicted dynamic material properties based on non-linear static finite element analyses have a good agreement of experimental results and those based on simplified theory equation.

  • PDF

절리암반의 변형률 의존적 전단탄성계수 및 감쇠비 특성을 고려한 터널의 내진 해석 (Seismic analysis of tunnel considering the strain-dependent shear modulus and damping ratio of a Jointed rock mass)

  • 송기일;정성훈;조계춘;이정학
    • 한국터널지하공간학회 논문집
    • /
    • 제12권4호
    • /
    • pp.295-306
    • /
    • 2010
  • 암석과는 달리 절리암반은 변형률 의존적 변형특성(탄성계수 및 감쇠비)을 나타낸다. 탄성파를 이용한 현장실험을 통해 미소변형률 수준에서 암반의 최대탄성계수를 얻을 수 있으며 이를 내진 설계에 반영하고 있으나, 미소 변형률 이상의 중변형률($10^{-4}{\sim}0.5%$) 영역의 동적거동에 대한 실험적인 규명과 이에 대한 수치적 적용은 전무한 실정이다. 본 연구에서는 변형률 의존적 전단탄성계수 및 감쇠비의 비선형 거동 특성을 반영하여 동적해석을 수행할 수 있는 FLAC3D 해석 모듈을 개발하였다. 리커 웨이브의 파동 변화를 분석하여 개발된 모듈에 대한 검증을 수행하였다. 절리 암반의 탄성파 전파특성과 동적 거동특성을 모사할 수 있는 절리암반 공진주 시험장비를 통하여 현장에서 채취한 절리암반의 변형률 의존적 전단탄성 계수의 감쇠 특성과 감쇠비의 증폭 특성을 획득하였다. 개발된 비선형 해석 모듈에 실험으로부터 획득된 거동 특성을 반영하여 수직구와 사갱의 접속부에 대한 내진 안정성 평가를 수행하였다. 내진해석 결과, 비선형 해석이 선형 해석보다 더 큰 연직변위와 수평변위 결과를 나타냈다. 라이닝의 휨압축응력은 수직구과 사갱의 접속부에서 집중되는 것으로 나타났으며 비선형해석의 경우 라이닝에 더 큰 휨압축응력이 발생되는 것으로 나타났다. 본 연구를 통하여 변형률 의존적 절리암반의 비선형 거동특성을 보다 깊이 있게 이해하고 해석 및 설계시 고려할 수 있을 것으로 사료된다.

An effective load increment method for multi modal adaptive pushover analysis of buildings

  • Turker, K.;Irtem, E.
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.53-73
    • /
    • 2007
  • In this study, an effective load increment method for multi modal adaptive non-linear static (pushover) analysis (NSA) for building type structures is presented. In the method, lumped plastisicity approach is adopted and geometrical non-linearties (second-order effects) are included. Non-linear yield conditions of column elements and geometrical non-linearity effects between successive plastic sections are linearized. Thus, load increment needed for formation of plastic sections can be determined directly (without applying iteration or step-by-step techniques) by using linearized yield conditions. After formation of each plastic section, the higher mode effects are considered by utilizing the essentials of traditional response spectrum analysis at linearized regions between plastic sections. Changing dynamic properties due to plastification in the system are used on the calculation of modal lateral loads. Thus, the effects of stiffness changes and local mechanism at the system on lateral load distribution are included. By using the proposed method, solution can be obtained effectively for multi-mode whereby the properties change due to plastifications in the system. In the study, a new procedure for determination of modal lateral loads is also proposed. In order to evaluate the proposed method, a 20 story RC frame building is analyzed and compared with Non-linear Dynamic Analysis (NDA) results and FEMA 356 Non-linear Static Analysis (NSA) procedures using fixed loads distributions (first mode, SRSS and uniform distribution) in terms of different parameters. Second-order effects on response quantities and periods are also investigated. When the NDA results are taken as reference, it is seen that proposed method yield generally better results than all FEMA 356 procedures for all investigated response quantities.

축방향 이송속도를 갖는 현의 모델링 및 진동해석 (Dynamic Modeling and Analysis for an Axially moving String)

  • 신창호;정진태;한창수
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.838-842
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, the equations of motion are derived considering the longitudinal and transverse deflection. The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. These equations are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e. the weak forms so that the admissible and comparison functions can be used for the bases of the longitudinal and transverse deflections respectively. With the discretized nonlinear equations, the time responses are investigated by using the generalized-$\alpha$ method.

  • PDF