• Title/Summary/Keyword: linear algorithm

Search Result 4,036, Processing Time 0.032 seconds

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF

Massive Parallel Processing Algorithm for Semiconductor Process Simulation (반도체 공정 시뮬레이션을 위한 초고속 병렬 연산 알고리즘)

  • 이제희;반용찬;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.48-58
    • /
    • 1999
  • In this paper, a new parallel computation method, which fully utilize the parallel processors both in mesh generation and FEM calculation for 2D/3D process simulation, is presented. High performance parallel FEM and parallel linear algebra solving technique was showed that excessive computational requirement of memory size and CPU time for the three-dimensional simulation could be treated successively. Our parallelized numerical solver successfully interpreted the transient enhanced diffusion (TED) phenomena of dopant diffusion and irregular shape of R-LOCOS within 15 minutes. Monte Carlo technique requires excessive computational requirement of CPU time. Therefore high performance parallel solving technique were employed to our cascade sputter simulation. The simulation results of Our sputter simulator allowed the calculation time of 520 sec and speedup of 25 using 30 processors. We found the optimized number of ion injection of our MC sputter simulation is 30,000.

  • PDF

A Study on an Improvement of the Performance by Spectrum Analysis with Variable Window in CELP Vocoder (CELP 부호화기에서 가변 윈도우 스펙트럼 분석에 의한 성능 향상에 관한 연구)

  • Min So-Yeon;Kim Eun-Hwan;Bae Myung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.233-238
    • /
    • 2005
  • In general CELP(Code Excited Linear Prediction) type vocoders provide good speech qualify around 4.8kbps. Among them, G.723.1 developed for Internet Phone and video-conferencing includes two vocoders, 5.3kbps ACELP(Algebraic-CELP) and 6.3kbps MP-MLQ(Multi-Pulse Maximum Likelihood Quantization) In order to improve the speech qualify in CELP vocoder, in this paper. we proposed a new spectrum analysis algorithm with variable window In CELP vocoder, the spectrum of the synthesised speech signal is distorted because the fixed size windows is used for spectrum analysis. So we have measured the spectral leakage and in order to minimize the spectral leakage have adjusted the window size. Applying this method G.723.1 ACELP, we can got SD(Spectral Distortion) reduction 0.084(dB), residual energy reduction 6.3$\%$ and MOS(Mean Opinion Score) improvement 0.1.

  • PDF

Computer Adaptive Testing Method for Measuring Disability in Patients With Back Pain

  • Choi, Bongsam
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.124-131
    • /
    • 2012
  • Most conventional instruments measuring disability rely on total score by simply adding individual item responses, which is dependent on the items chosen to represent the underlying construct (test-dependent) and a test statistic, such as coefficient alpha for the estimate of reliability, varying from sample to sample (sample-dependent). By contrast, item response theory (IRT) method focuses on the psychometric properties of the test items instead of the instrument as a whole. By estimating probability that a respondent will select a particular rating for an item, item difficulty and person ability (or disability) can be placed on same linear continuum. These estimates are invariant regardless of the item used (test-free measurement) and the ability of sample applied (sample-free measurement). These advantages of IRT allow the creation of invariantly calibrated large item banks that precisely discriminate the disability levels of individuals. Computer adaptive testing (CAT) method often requiring a testing algorithm promise a means for administering items in a way that is both efficient and precise. This method permits selectively administering items that are closely matched to the ability level of individuals (measurement precision) and measuring the ability without the loss of precision provided by the full item bank (measurement efficiency). These measurement properties can reasonably be achieved using IRT and CAT method. This article aims to investigate comprehensive overview of the existing disability instrument for back pain and to inform physical therapists of an alternative innovative way overcoming the shortcomings of conventional disability instruments. An understanding of IRT and CAT method will equip physical therapist with skills in interpreting the measurement properties of disability instruments developed using the methods.

Assessment through Statistical Methods of Water Quality Parameters(WQPs) in the Han River in Korea

  • Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.90-101
    • /
    • 2015
  • Objective: This study was conducted to develop a chemical oxygen demand (COD) regression model using water quality monitoring data (January, 2014) obtained from the Han River auto-monitoring stations. Methods: Surface water quality data at 198 sampling stations along the six major areas were assembled and analyzed to determine the spatial distribution and clustering of monitoring stations based on 18 WQPs and regression modeling using selected parameters. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR), cluster analysis (CA) and principal component analysis (PCA) were used to build a COD model using water quality data. Results: A best GA-MLR model facilitated computing the WQPs for a 5-descriptor COD model with satisfactory statistical results ($r^2=92.64$,$Q{^2}_{LOO}=91.45$,$Q{^2}_{Ext}=88.17$). This approach includes variable selection of the WQPs in order to find the most important factors affecting water quality. Additionally, ordination techniques like PCA and CA were used to classify monitoring stations. The biplot based on the first two principal components (PCs) of the PCA model identified three distinct groups of stations, but also differs with respect to the correlation with WQPs, which enables better interpretation of the water quality characteristics at particular stations as of January 2014. Conclusion: This data analysis procedure appears to provide an efficient means of modelling water quality by interpreting and defining its most essential variables, such as TOC and BOD. The water parameters selected in a COD model as most important in contributing to environmental health and water pollution can be utilized for the application of water quality management strategies. At present, the river is under threat of anthropogenic disturbances during festival periods, especially at upstream areas.

Network Design with Non-Linear Optimization Method (비선형(非線型) 최적화기법(最適化技法)에 의한 가로망설계(街路網設計))

  • Jang, Hyun Bong;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.165-172
    • /
    • 1988
  • An optimal network design method using continuous form of design variables is considered. Modified Hooke-and-Jeeves algorithm has been implemented in order to solve nonlinear progamming problem which is approximately equivalent to the real network design problem (NDP) with system. efficiency criteria(i. e. travel time and costs) and construction cost as objective function. Various forms of construction cost function, locations of initial solution, and dimension of initial step size of link improvement are taken into account to show the validity of this approach. The results obtained are quite promising in terms of the numbers of evaluations in solving NDP, and the speed of convergence. Finally, some techniques in choosing efficient intial solution, initial step size and approximation are given.

  • PDF

Book Remodeling Analysis of Femur Using Hybrid Beam Theory (보 이론을 이용한 대퇴골 재생성의 해석)

  • Kim, Seung-Jong;Jeong, Jae-Yeon;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.329-337
    • /
    • 2000
  • An investigation has been performed to develop an analysis tool based on a nonlinear beam theory, which can be used to predict the long-term behavior of an artificial hip joint. The nonlinear behav ior of the femur arise from the coupled dependence of the bone density and the mechanical properties on each other. The beam theory together with its numerical algorithm is developed to take into account the nonlinear bone remodeling process of the femur that is long enough to be assumed as a beam. A piecewise linear curve for the bone remodeling rate is used in the bone remodeling theory and the surface area density of bone is modeled as the third order polynomial function of bone density. At each section of the beam, a constant curvature is assumed and the longitudinal strains are also assumed to vary linearly across the section. The Newton-Rhapson iteration method is used to solve the nonlinear equations for each cross section of the bone and a backward method is used to march along the time. The density and the remodeling signal ar, calculated along with time for the various time steps, and the developed beam theory has been verified by comparing with the results of finite element analysis of a remodeling bone with an artificial hip joint of titanium prosthesis subjected to uni-axial loads and pure bending moment. It is concluded that the developed beam theory can be used to predict the long-term behavior of the femur and thus to design the artificial hip prosthesis.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

  • Xu, Yi;Chen, Quansheng;Liu, Yan;Sun, Xin;Huang, Qiping;Ouyang, Qin;Zhao, Jiewen
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.362-375
    • /
    • 2018
  • This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.