• Title/Summary/Keyword: linear actuator

Search Result 632, Processing Time 0.029 seconds

Design of a DSP Controller and Driver for the Power-by-wire(PBW) Driving System Using BLDC Servo Motor Pump (BLDC 서보 모터 펌프를 이용하는 직동력(PBW) 구동시스템의 DSP 제어기 및 구동기 설계)

  • Joo, Jae-Hun;Sim, Dong-Seouk;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1207-1212
    • /
    • 2011
  • This paper presents a study on the DSP(Digital Signal Processor) controller for the PBW(power-by-wire) system using BLDC(Brushless Direct Current) servo motor pump. The PBW hydraulic actuator was realized with hydraulic pump driven by BLDC servo motor, hydraulic cylinder and controller. This PBW system needs speed control of servo motor for linear thrust action of hydraulic cylinder. This paper implements a servo controller with vector control algorithm and MIN-MAX PWM technique. As CPU of a controller, TMS320F2812 DSP was adopted because it has PWM waveform generator, A/D converter, SPI(Serial Peripheral Interface) port and many input/output port etc.

A Study on Winter Season Usability Performance Improvement of Flapper Valve for KUH-1 (한국형 기동헬기 동계운용능력 향상을 위한 플래퍼밸브 개선연구)

  • Choi, Jae Hyung;Chang, In ki;Shim, Dai Sung;Ahn, Jeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • Flapper Valve of Korean Utility Helicopter(KUH-1) is an essential equipment in Environmental Control System(ECS) for pilot to perform flight mission. It provides pilots and crews with heating, ventilating and air conditioning. It has function of maintaining room temperature to sustain operational capability for pilot and crew. This paper summarizes pilot comments in flight test which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test at low temperature.

TRANSIENT PERFORMANCE OF AN SI ENGINE BY TRANSIENT RESPONSE SPECIFICATIONS

  • Kwark, J.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.109-117
    • /
    • 2003
  • The analysis and evaluation of the transient performance by the transient response specifications under various acceleration speeds and types based on driver's typical acceleration habit are implemented by the experimental study to provide the appropriate direction for the transient control in a gasoline engine. The concept of the transient response specifications which consist of delay time, rising time, maximum overshoot and settling time, and the analysis method using them are introduced to evaluate the characteristics of the transient performance quantitatively. Furthermore four acceleration speeds and four acceleration types are set respectively to realize the various transient states which are similar to the real drive. Several performance parameters in terms of engine speed, manifold absolute pressure, fuel injection duration and air excess ratio are measured simultaneously during the various acceleration using a throttle actuator controlled by a PC. The transient response specifications characterized well the transient performance for the various acceleration speed and types quantitatively. Delay and rising time with increment of the acceleration speed became shorter, but settling time did longer. Intensified acceleration type appeared to be the most economical in view of fuel consumption, and linear acceleration type was found to have the least harmful emission concentration.

A Study on The Novel Structured 3-DOF Spherical Motor (새로운 3-자유도 구형 모터에 관한 연구)

  • Lee, Dong-Cheol;Kim, Dae-Kyong;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1362-1370
    • /
    • 2008
  • This paper describes the design and characteristic analysis of a novel 3-DOF(Degree of Freedom) spherical motor. For multi DOF actuating, several numbers of motors have been used. By the using of normal motors they connected each other in single joint, is necessary to a several type of complex power transmission devices. The 3-DOF spherical motor can drive roll, pitch, and yaw motion in only one unit and it is not necessary to use additional gears and links parts. Therefore the using of 3-DOF spherical motor can eliminate; combined effects of inertia, backlash, non-linear friction, and elastic deformation of gears. In this paper, we propose the novel structured 3-DOF spherical motor and derive its principles of operation. Firstly, we designed concept model of novel structured 3-DOF spherical motor. Next, we derive the control method by calculating the currents. Also, to have intuitive driving control, we express the rotor position in equivalent angle-axis system and determine the exciting period of currents from the calculation result of the currents. To verify the control method, we calculated the currents by the position of rotor. and then we analyzed the characteristics by 3D Finite Element Method when the calculated currents are excited.

A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks (신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

Relation between Resonance Frequency and Power factor on Linear Actuator with Resonance State (공진구동 선형액추에이터의 공진주파수와 Power factor특성)

  • Woo, B.C.;Hong, D.K.;Kim, J.M.;Chang, J.H.;Jeong, Y.H.;Koo, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.987-988
    • /
    • 2007
  • 리니어 모터는 일반적으로 회전하는 모터와 같이 여러 형상의 극간에서 발생되는 힘의 균형에 의해서 구동되는 것이 일반적이다. 특히 하나의 극간에서 미소 구동하는 리니어 모터는 구동력과 실제 이동하는 위치 사이에서 댐핑이나 무게와 함 사이에서 발생하는 가속력의 차이에 의해서 주어진 힘의 파형과 움직이는 위치의 괴적이 만들어가는 이동자의 위치 사이에는 다소 시간 처짐이 발생하게 된다. 본 논문에서는 구동력과 실제 이동하는 위치 사이의 시간 처짐의 원인으로 알려져 있는 여러 요소중 주파수와 입력전류를 변화시키고 이에 따른 선형전동기의 power factor의 변화와 공진주파수의 관계 등 선형전동기의 구동력 변화를 알아보았다. IT 기기 냉각용으로 제작한 횡자속 선형전동기에서 공진구동용 스프링을 장착하고 공진주파수 부근과 power factor가 가장 큰 값을 가지는 부근의 주파수를 선정하고 입력전류에 따른 전류, 전압, 위치, 역율을 알아보았다.

  • PDF

Dynamic Characteristics and Control of Two-Link Arm with Free Joint (자유관절을 가진 2링크 암의 동특성과 제어)

  • 유기호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.216-223
    • /
    • 2000
  • A robot arm with free joints has some advantages over conventional ones. A light weight and low power consumed arm can be made by a reduction of the number of joint actuators. And this arm can easily overcomes actuator failure due to unexpected accident. In general such underactuated arm does not have controllability because of the lack of joint actuators. The two-link arm with a free joint introduced in this paper is also uncontrollable in the sense of linear system theory. However, the linearized system sometimes can not represent the inherent dynamic behavior of the nonlinear system. In this paper the dynamic characteristics of the two-link arm with a free joint in view of global motion including damping and friction effect of the joints is investigated. In the case of considering only the damping effect, the controllable goal positions are confined to a specific trajectories. But in the case of considering the friction effect, the system can be controlled to arbitrary positions using the friction of the free joint as a holding brake. Also numerical example of position control is presented.

  • PDF

Fuzzy Sky-hook Control of Semi-active Suspension System Using Rotary MR Damper (회전형 MR 댐퍼를 이용한 반능동 현가장치의 퍼지 스카이-훅 제어)

  • Cho, Jeong-Mok;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.701-706
    • /
    • 2007
  • Recently, a number of researches about linear magnetorheological(MR) damper using valve-mode characteristics of MR fluid have sufficiently undertaken, but researches about rotary MR damper using shear-mode characteristics of MR fluid are not enough. In this paper, we performed vibration control of shear-mode MR damper for unlimited rotating actuator of mobile robot. Also fuzzy logic based vibration control for shear-mode MR damper is suggested. The parameters, like scaling factor of input/output and center of the triangular membership functions associated with the different linguistic variables, are tuned by genetic algorithm. Simulation results demonstrate the effectiveness of the fuzzy-skyhook controller for vibration control of shear-mode MR damper under impact force.

Non linear properties of multilayer piezoelectric actuator under compressive stress in static electric fields (기계적인 부하 인가하에서 적층형 압전 액츄에이터의 비선형 특성)

  • Ha, Mun-Su;Jeong, Soon-Jong;Ko, Jung-Hyuk;Lee, Dae-Su;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.684-687
    • /
    • 2004
  • 일반적으로 적층형 압전 액츄에이터의 변위는 액츄에이터의 내부 적층수와 압전정수($d_{33}$)에 비례적으로 증가한다. 그러나 압전현상을 이용한 액츄에이터는 전기적, 기계적 부하에 의한 dipole 거동을 보이기 때문에 domain wall에 의한 압전정수의 비선형 거동을 보인다. 본 논문에서는 PMN-PZ-PT 세라믹스를 이용하여 $2{\times}3{\times}10$ (mm)의 적층형 세라믹 액츄에이터를 제조 후 1kV/mm의 일정한 전계를 인가하고 $0\sim990N$의 기계적 부하 인가하에서 적층형 세라믹 액츄에이터의 비선형 특성을 조사하였다. 압전 액츄에이터의 비선형 거동은 기계적 응력에 의한 유전 및 전왜 특성에 영향주고, 액츄에이터의 변위 특성은 유전 및 전왜 특성의 영향에 크게 의존한다.

  • PDF

Numerical simulation of the unsteady flowfield in complete propulsion systems

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • A non-linear numerical simulation technique for predicting the unsteady performances of an airbreathing engine is developed. The study focuses on the simulation of integrated propulsion systems, where a closer coupling is needed between the airframe and the engine dynamics. In fact, the solution of the fully unsteady flow governing equations, rather than a lumped volume gas dynamics discretization, is essential for modeling the coupling between aero-servoelastic modes and engine dynamics in highly integrated propulsion systems. This consideration holds for any propulsion system when a full separation between the fluid dynamic time-scale and engine transient cannot be appreciated, as in the case of flow instabilities (e.g., rotating stall, surge, inlet unstart), or in case of sudden external perturbations (e.g., gas ingestion). Simulations of the coupling between external and internal flow are performed. The flow around the nacelle and inside the engine ducts (i.e., air intakes, nozzles) is solved by CFD computations, whereas the flow evolution through compressor and turbine bladings is simulated by actuator disks. Shaft work balance and rotor dynamics are deduced from the estimated torque on each turbine/compressor blade row.