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A Dexterous Motion Control Method of Redundant Robot Manipulators
based on Neural Optimization Networks

Woong—keun Hyun' - Young—Kee Jung”

0] =22 WEy|S-HI WSS XY ol40ata KIS U
By AILE SNy ME| XIR0) 28t 2

ABSTRACT

An effective dexterous motion control method of redundant robot manipulators based on neural
optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy
consumption, and avoiding physical limits of actuator, while performing a given task. The method employs
a neural optimization network with parallel processing capability, where only a simple geometric analysis
for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse
matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM
evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among
principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis.
Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1)
linear combination of the resolved motion by each joint differential motion should be equal to the desired
velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential
joint motion is minimized where weightings are adjusted by JGMM.

To show the validity of the proposed method, several numerical examples are illustrated.

7194 E: Neural Network, Redundant Robot, Dextrous motion.
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I . Introduction

Redundant robot arms, designed to have more
joints than necessary for given tasks, have received
much attention due to their flexibility in task
execution provided by the availability of infinite
number of joint motions that lead to the same
end-effector trajectory. Typically, the kinematic
component of a redundant manipulator control
scheme must generate a set of joint angle trajec-
tories, from the infinite set of possible trajectories,
while optimizing performance functions, such as
singularity avoidance, collision avoidance, or joint
limit avoidance. For this, redundant robot control
method should satisfy multi-criteria while taking
given task. General approaches are nested projection
methods which project a gradient of performance
function to null space of Jacobian and project the
other performance to the nested null space of the
null space of the Jacobian{3]. However, this method
has a difficulty in numerically and algebraically
finding the nested null space of the Jacobian
especially when the robot has high redundant D.OF.

In this paper, an optimal solution approach with
equality and inequality constraints is employed in
dexterous motion control the redundant robot
manipulators, where physical limits of actuator and
dexterous performance are represented as inequality
conditions and weightings of the performance
functions, respectively. Optimal solution is achieved
by a neural optimization network which has a
capability of parallel processing. For this, kinematic
approach should be represented as a form of parallel
processing, which is obtained by proposed simple
geometric analysis of the resolved motion for each
joint differential motion. An index for the dexterous
motion can also be obtained by the geometric
analysis on the following idea; For a dexterous or a
nonsingular motion of a redundant robot manipula-
tor, it is necessary for a robot manipulator to be in

a configuration whose manipulability index is maxi-
mum, where manipulability index is mathematically
defined as the volume of ellipsoid in the
m-dimensional task space when the Euclidean norm
of joint velocity is less than or equal to unity[1].
The length of each principal axis of the ellipsoid
volume implies how well the robot end effect can
move toward the axis. Therefore, if the shape of the
ellipsoid volume is similar to a sphere, the
end-effector of manipulator is able to moving well
toward all direction. The principal axes of the
manipulability ellipsoid can be obtained by the
singular value decomposition of the manipulator
Jacobian matrix. Since the product of all singular
values is equal to V det(JJ7) [1], it is necessary to
maximize the minimum singular value[2,3], or to
minimize condition number{4] for the enhancement
of the volume of the ellipsoid. These optimization
processes require partial differentiations of the
square root of det(JJT) or singular values of
Jacobian matrix with respect to joint variables,
which seems to be so complicated, especially in the
case of highly redundant manipulators.

To cope with this problem, a joint geometric
manipulability measure(JGMM) is proposed for
nonsingular motions of a redundant robot.
Specifically, each length of principal axis of the
manipulability ellipsoid volume is approximately
obtained by a geometric analysis at time ¢— &4 And
then joint motion is determined in such a way that
the shortest principal axis at time #— &¢is enlarged
by a neural optimization network, where no explicit
partial differentiation is required.

. A Neural Optimization Network for
Resolved Motion Controi of Redundant
Robot Manipulators

In controlling redundant robot manipulators,
neural networks have been effectively utilized as in
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[567]. Among them, Hyun et all3] proposed a
neural optimization network to resolve the motion of
redundant manipulators. And also they proposed a
model for description of differential motion not to
explicitly use the pseudo inverse of the Jacobian.
Now, such a modelling technique in [5] is briefly
reviewed as follows; First of all, a task coordinate is
assigned in such a way that the direction of desired
velocity vector of the end-effector is to be the
z-axis, and then contributions of end-effector
motion due to each differential joint motion are
mapped onto the task coordinate. This process is
sketched in Fig.l.

Fig.1. The decomposed components of V;(# with respect
(o] Vd(t)

To be more specific, suppose that the i-th joint
rotates as much as dg and the other joints locked
up at time interval of, where &g is constant value
which is small enough to guarantee the movement
of the end-effector to be linealized. Then the
end-effector moves with a velocity. Let the velocity
of end-effector resulting from the -th joint

differential motion be denoted by 6 X1 wvector
zZ(d=[ V"0 | W(H]7, where V() and
W.(D represent the transia- tional and rotational
6x1
V') | W, (D17 be the desired

velocities,  respectively.  Let vector

Z,(n=1
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velocity of end-effector. And let ;,,,,(t) and

w,u() be the unit vectors given as
V.(D/ll V(B WD/l Wy (Dl

respectively. Also let V,(H and W,(H be the

and

vectors which are obtained by the projection V;(#
onto V,(# and by the projection W,(# onto
W.(D, respectively, and let V,(# and W, () be

the vectors which are obtained by the projection of

V.() onto the surface orthogonal to V,(# and
by v ()= V(D - /z;,‘d(t) the projection of W;(#
onto the surface orthogonal to W;(#), respectively.
- implies the inner product of

Further let , where

two vectors. Then V() can be written as

Vil =00 2.a(d (1)
And let 9,,(# be the unit vector on the surface

to Vy(H given as

orthogonal
Pu(D= Vi (DIl Vo (DIl and let 2,,() be the
to both Zm(t) and

unit vector orthogonal

;”d(t). Then if we let v,(#) and »,(# be the

projections of V(8 onto ;m( H and ;oy( b,

respectively, V.;(H can be expressed as

ViD= 0:(D Da(D+0,(D (D). (2
In a similar way, let w, ()= W(D - ;M(t),
W (D= Wy (/I Wa(Dll and ,,(£) be the

unit vector orthogonal to both ,4(#) and w. (.

Then W,(#) and W, (#) can be written as

W (D= wi(D w,ul(d), &)
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and
Wo(D=w,() WalD+w, () wy(H, (4

where w,(f and w,(# are the projections of
W, () onto w,,(# and /u\zoy(t), respectively, and

w,(#) is that of W(d) onto ,,(f.

It is noted that if linear combinations of wv,(#
and wy(H are equal toll V(O and | W,(AIl,
linear combinations of v, (8,

respectively, and

v, (), w, () and w,(f) are equal to zero,

, n, then the robot can
can be

respectively, for i=1,2, ...
follow the desired trajectory. This
mathematically summarized as

a(u)= ZuDoD-IVLOI=0,
gl u(D)= Fuldo,H=0, ®)
(D)= JulHvdH=0, )
g u(D)= [uldw L)~ WADI=0,  (®)

as(u())= RulHw, (D=0, ©

and

g u(D) = 2julHw, D=0, (10)

wu(O=[wy(® ud ... u,(H]1” and
u{#H is a scalar variable to be multiplied to a
dg during a fixed
time interval &t so that the velocity of the ¢ th

joint is obtained by g8 = w{f)dq/dt.

where

prespecified small joint angle

The resolved motion of the redundant robot
manipulators is here shown to be obtained by
solving an optimization problem with eguality and
inequality constraints. For this, let #Zf{u(®) for

inequality constraint of joint velocity be given by

u,‘(t) - Umaxi,

=TT

iz

Umaxi and  Umpin; are maximum and
minimum limit values for the i-th joint velocity,
respectively. Then, the optimization problem can be
formulated to resolve the motion of redundant robot

manipulators as Problem 1( P,).

where

Py
min Au(8)
u(t) (12)
subject to the constraints
glu(H)=0k,k=1,2, ,..., 6, (13)
AL u(H)<0, =12, ,..., 2n, (14)
where
Ruld)= 317 oD (0. 15)

In Eq.(15), w{® is the weighting factor for the i
-th joint motion. In problem P;, the inequality

converted
constraints using slack variables.

into  equality
Namely, the

constraints can be

constraints of the form #A{ #(#)<0 can be

expressed as

Clu(D), 2(D)= h( ul8) +25(0),
=12, ... (16)
where z(d={[z(Dz(D ..z,(H]". Since 2¥P

,2n,

‘s are positive, the constraints C{ #«(9), z(#)=0
make h{ «(#)) be negative. Therefore, a neural

optimization network with anti-symmetry connec~
tions among the neurons can be easily constructed
to solve Problem 1 by applying the Platt and Barr's
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approach(9] as follows;

For i=1,2, ...,n, /=12, ..,2n and k=12, .., 6.
- __ 0w dgi(u) 9C( u,2)
u;= 6‘“,’ gﬂk 3ui Fe= 7§ 3u,- *
(17
. aC; u, z)
= — P Gl I
2; A 9z, (18)
B/e= g %), (19
7;=C( u,2), (20)
and
7;20, (21)
where B,/s and /s imply the neurons
corresponding to Lagrange multipliers for the

equality constraints, and the z;'s imply the neurons

for slack variables to convert the inequality

constraints to the equality constraints.

i, Joint Geometric Manipulability
Measure(JGMM).

In this section, a joint geometric manipulability
measure is  proposed to wi( D),

i=1,2, ..., =, in Eq.(15) for nonsingular motions
of the redundant robot. Specifically, each length of
principal axis of the manipulability ellipsoid volume
is approximately obtained by a geometric analysis at
time ¢~ 6t And then joint motion is determined in
such a way that the shortest principal axis at time
t— 8t is enlarged by a neural optimization network
proposed  in[5], partial
differentiation is required.

For this, let the translational velocity of the
end-effector resulting from s-th joint differential

motion at time f— d¢ be denoted as V;(¢— 8. Note

adjust

where no  explicit

that w«,(¢—68f) V{t—¥8) is considered as an
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approximated translational velocity of end-effector

due to é,»( #). And then an ellipsoid volume can be

approximately generated in three dimensional space

by a vector sum of u(t—08) VL{t—é8f) for

i=1,2,
llu(t—8)|[<1. Let such an ellipsoid volume be
expressed as ¢, (¢— 8f) implying manipulability of

e M under the  constraint  of

the translational movement of end-effector at time

{— o0t Now, the the longest principal axis of

& (t—81), Vaax(t—81), can be obtained as

Vax (£— 68) = Arg{max [l V(t—Il, i=1,2, ..., #}

(22)

Let second longest principal axis be denoted as

Vomax(t— 0D. Since the shape of surface generated

by the vector sum of two orthogonal vectors with

respect to  Voay (¢#— 8f) becomes the 2-dimensional

ellipsoid I(#) as shown in Fig. 2. Vi uu(t— ) can

be obtained as

Vomar(t— 60 = Arg{ max S Vg (t— 80) V{t— 8D, i=1,2

(23)
where S( V;(#) is skew symmetric matrix of
V:(H and can be expressed as

0 Z ( t)
v zi( t) 0

v y,'( t)

S(V{H)= - v, (D). (24)

—vu(d) v(H 0
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Fig. 2 An approximated manipulabifity ellipsoid volume
represented Y Vipax (2= 00, Voma(t— 08 and

?short(t_ 6t)

Let the unit vector of 3rd principal axis, the
shortest principal axis of the ellipsoid volume, be

denoted as Ve, (¢— 8. Note that the 3rd principal

axis is orthogonal to both Vo (f—8) and
Voma(t— 08). Thus V. (t—6f) can be obtained

by

SV max (2= 00) Voma(t— 80
1SV max (1= 89) Viomas(t— DI

Vitor (1— 88) =
(25)

It is remarked that the translational movement
toward the direction of ?W,,(t— 8 is harder than

that toward the direction of other principal axes in

the sense of manipulability. To make the

translational movement toward /I\,short(t_ of) be

easy, the length of axis of /175,,0,,(1‘—- 68 should be

enlarged. For this, a joint geometric manipulability
measure(JGMM) for translational velocity, Q.(9, is

given as
Q) = i) 26)
3 Quad
where Q9 is defined as
Qi) =17,/ p(i ), and where (i, and

u(1, ) are given by
| Voo (1= 88 + VDI

KD =S D= 50) VADI @n
and
(i, 5= | Vator (1= 80) - Vi(t= 50 28)

NSC Ve (2—3D) Vit =801

In Eq.(27), #(i, D denotes the ratio of tangential
component of V;(# with respect to Vien(t— 00
to orthogonal components of V,(# with respect to

Vo (t— 0. And thus, if 7(s, 9 is large, a robot
manipulator is in a configuration of which V;(#) is
similar to ?Wn( t—8f). And a large value of p(9
implies that a robot manipulator is in a éonfiguration
of which V;(t—o) is similar to Vies(t—0%).
Thus, a large value of @Q,(# implies that i-th

joint  differential motion can
configuration of the robot in such a way that the

change the

length of axis of ,I\’s,,,,ﬂ(t— 8D becomes longer.

Since Q) can be extremely large or small,

normalized form of Qud# for £=1,2, ,..., n

is employed instead as a

QD

as shown in Fig.3, the j-th joint differential motion
helps a redundant robot manipulator to be in a
nonsingular configuration more than the i-th joint

It is remarked that if @(#) is larger than

differential motion does.
In a similar way, JGMM for rotational velocity of
end-effector can be given as follows;

Qul =ik
> Qe

where Q;u(?) is defined as

(29)

| W (1= 80 - Wit— 89|
S( Win(£— 88)) WLHII

(30

| o (1= 80) - WD
NSC g (1~ 80) WLDY

Qi) =

In Eq.(30), /V\Vs;,m(t— 8D is defined as

S Wanae (8= 08) Womee (1— 1)
1SC Wrnax (£ 00)) Woma: (¢— 0D’

Wt (1— 08 =
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where Wy, (+— 6 and W, (t— 6F) are given

as
Woas (- 88) = Avgl max || W{t— 8|, i=1,2, -, »)
(32)
and
Womar( 1 80 = Ared max |S( Woas (1= 80) W 1= DI, i=1,2, -, 2}

(33)

If all joint velocities can be continuously adjusted
according to JGMM, @,(9 and @,.(9, redundant

robot manipulators are expected to avoid singular
postures. For this, motions of redundant robot
manipulators are controlled by adjusting weighting
of the neural optimization network. Specifically,

weighting factor w,(#, i=1,2, ..., #, is adjusted

by Q:(H and Q.(9 as follows;

2

- Zemiol g1
old = G Mgt oL T O

where the weighting factor w,(#d is selected so

that it is inversely proportional to the measures
Q.(H and Q,(?. In this way, the joint which

contributes largely to the desired motion may move
with large velocity. In Eq.(34), x; is the off-set

weighting factor.

Fig.3  Decomposed orthogonal and tangential components of

VLD and Vi(#) respect to V. (£— 80
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IV. Simulation Results

A planar redundant robot manipulator with three
degrees of freedom is employed, where the lengths

of the links /;, /;, and /3 are chosen to be the

same as 400(mm). The task is to move with the
constant velocity of 34.14 (mmy/sec) from start point
S to goal point G as shown in Fig.4. The initial joint
angles are given as ¢(0)=[0° —45° —45°]7
Fig.4.(a) shows robot configurations from S to G
when all offset values x;, x; and x; in Eq.(34) are
chosen as unity. And Fig4.(b) shows the robot
configurations for S to G when x,=100.0, x,=1.0

and x;-1.0. Since offset value of the Ist joint for

the case in Fig.4.(a) is chosen to be 100 times larger
than that of the Ist joint for the case in Fig.4.(b), as

shown in Fig5, ¢,(#) of Fig5.(a) becomes larger
than that of Fig.5.(b). From these simulation results,
it is expected that our neural optimization network
successfully work according to a choice of
weightings in Eq.(34).

(a)

Fig4 Robot configurations from S to G for the cases that
(@ x1=xy=x3=1.0 and (b) x1=1000, x,=1.0 and x;
=1.0.
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Fig.5 Joint velocity trajectories for the cases that
@ x,=x,=x3=1.0 ang
{©) »,=100.0, x,=1.0 and x;=10.

The second purpose of our simulation is to show
the validities of the proposed measure JGMM. For
this, consider the case when a redundant robot
manipulator becomes a near-singular as shown in
Fig6. For this case, several measures such as
manipulability[2], condition number[6], singular value
decomposition[1] and JGMM are applied to avoid the
singularity. The task is to follow the linear path
from point S to the point G with the speed of 445
(mm/sec). The a(0)=
[90° —135° 135°17 Fig.7 shows resultant motions
for the approaches using (a) our proposed JGMM,
(b) Yoshikawa's Manipulability(YM), (c¢) condition
number(CN), (d) singular value decomposition(SVD)
measures and (e) pseudo inverse(PI). It can be
observed from Fig.7 that our proposed JGMM and
YM generate similar smooth motion trajectories in

initial configuration is

the sense that maximum accerations for two motion
trajectories are measured to be almost same, but the
approaches using CN, SVD and PI show a rather
big accelerations when compared with JGMM and
YM. Especially, joint velocities for pseudo inverse
method shown in -Fig.7.(e) changed abruptly at
about 6 sec, since the robot manipulator was in to
be a near singular configuration at that time. Thus,
our proposed method can be a good alternative to
the conventional methods in [1,2,3], where complex

computations including partial derivatives of

subgoals such as manipulability are required.

Fig6 A test Example which robot manipulator is to be in
near singularconfiguration.
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V. Conculsion

An effective dexterous motion control method of
redundant robot manipulators based on neural
optimization network was proposed to satisfy
multi-criteria.  Optimal
equality and inequality constraints is applied to a

solution approach with
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Fig.7 Trajectories of joint velocities. (a) JGMM (b) YM (c) CN
{d SVD (e} PI

dexterous motion control of the redundant robot
manipulators, where physical limits of actuator and
dexterous performance are represented as inequality
conditions and weightings of the performance
function of optimal problem, respectively. Optimal
solutions are achieved by a neural optimization net-
work which has a capability of parallel processing.
For this, a kinematic approach was represented as a
form of parallel processing by the proposed simple
geometric analysis method for the resolved motion
of each joint differential motion. For a dexterous
motion, a joint geometric manipulability mea-
sure(JGMM) was proposed. JGMM evaluates a
contribution of each joint differential motion for
enlarging the shortest length of principal axis of the
manipulability  ellipsoid volume approximately
obtained by a geometric analysis. JGMM was
utilized to control the redundant manipulators not to
be in a singular configuration by a neural optimiza-
tion network. The validity of the proposed method

was shown from the several numerical examples.
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