• 제목/요약/키워드: linear SVM

검색결과 172건 처리시간 0.025초

A Hierarchical Text Rating System for Objectionable Documents

  • Jeong, Chi-Yoon;Han, Seung-Wan;Nam, Taek-Yong
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.22-26
    • /
    • 2005
  • In this paper, we classified the objectionable texts into four rates according to their harmfulness and proposed the hierarchical text rating system for objectionable documents. Since the documents in the same category have similarities in used words, expressions and structure of the document, the text rating system, which uses a single classification model, has low accuracy. To solve this problem, we separate objectionable documents into several subsets by using their properties, and then classify the subsets hierarchically. The proposed system consists of three layers. In each layer, we select features using the chi-square statistics, and then the weight of the features, which is calculated by using the TF-IDF weighting scheme, is used as an input of the non-linear SVM classifier. By means of a hierarchical scheme using the different features and the different number of features in each layer, we can characterize the objectionability of documents more effectively and expect to improve the performance of the rating system. We compared the performance of the proposed system and performance of several text rating systems and experimental results show that the proposed system can archive an excellent classification performance.

Development and Comparison of Data Mining-based Prediction Models of Building Fire Probability

  • 홍성관;정승렬
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.101-112
    • /
    • 2018
  • A lot of manpower and budgets are being used to prevent fires, and only a small portion of the data generated during this process is used for disaster prevention activities. This study develops a prediction model of fire occurrence probability based on data mining in order to more actively use these data for disaster prevention activities. For this purpose, variables for predicting fire occurrence probability of various buildings were selected and data of construction administrative system, national fire information system, and Korea Fire Insurance Association were collected and integrated data set was constructed. After appropriate data cleansing and preprocessing, various data mining methodologies such as artificial neural network, decision trees, SVM, and Naive Bayesian were used to develop a prediction model of the fire occurrence probability of buildings. The most accurate model among the derived models is Linear SVM model which shows 68.42% as experimental data and 63.54% as verification data and it is the best model to predict fire occurrence probability of buildings. As this study develops the prediction model which uses only the set values of the specific ranges, future studies may explore more opportunites to use various setting values not shown in this study.

hERG 이온채널 저해제에 대한 2D-QSAR 분석 (2D-QSAR analysis for hERG ion channel inhibitors)

  • 전을혜;박지현;정진희;이성광
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.533-543
    • /
    • 2011
  • hERG (human ether-a-go-go related gene) 이온채널은 심장 재분극의 중요 요소이며 이 채널의 저해제는 부정맥과 돌연사를 유발할 수 있다. 따라서, 신약개발과정에서 후보물질이 hERG 이온채널의 잠재적인 저해제일 경우에는 심장독성 부작용을 유발하므로, 이를 최소화하고자 많은 노력이 집중되고 있다. 본 연구는 HEK(인간 배아 신장)세포에서 얻은 202개 유기화합물의 $IC_{50}$ 데이터를 이용하여 2차원 구조-활성의 정량적 관계(2D-QSAR)방법으로 예측하는 모델을 개발하였다. hERG이온채널 저해제의 기계 학습방법으로는 다중선형회귀(Multiple Linear Regression), 서포트 벡터 머신(Support Vector Machine: SVM)방법과 인공신경망(Artificial Neural Network)방법이며, 교차검증을 적용한 모집단 기반 전진선택(forward selection)방법과 결합하여 각 학습모델에 적합한 최적의 표현자들을 결정하였다. 가장 우수한 방법은 14종의 표현자를 사용한 인공신경망방법($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583)이었고, 다중선형회귀방법을 통해서 hERG이온채널 저해물질의 구조적 특징과 수용체와의 상호작용을 설명할 수 있다. QSAR모델의 검증은 교차검증과 Y-scrambling test방법으로 수행하였다.

비선형매핑 기반 뇌-기계 인터페이스를 위한 신경신호 spike train 디코딩 방법 (Neuronal Spike Train Decoding Methods for the Brain-Machine Interface Using Nonlinear Mapping)

  • 김경환;김성신;김성준
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권7호
    • /
    • pp.468-474
    • /
    • 2005
  • Brain-machine interface (BMI) based on neuronal spike trains is regarded as one of the most promising means to restore basic body functions of severely paralyzed patients. The spike train decoding algorithm, which extracts underlying information of neuronal signals, is essential for the BMI. Previous studies report that a linear filter is effective for this purpose and there is no noteworthy gain from the use of nonlinear mapping algorithms, in spite of the fact that neuronal encoding process is obviously nonlinear. We designed several decoding algorithms based on the linear filter, and two nonlinear mapping algorithms using multilayer perceptron (MLP) and support vector machine regression (SVR), and show that the nonlinear algorithms are superior in general. The MLP often showed unsatisfactory performance especially when it is carelessly trained. The nonlinear SVR showed the highest performance. This may be due to the superiority of the SVR in training and generalization. The advantage of using nonlinear algorithms were more profound for the cases when there are false-positive/negative errors in spike trains.

다중 요소를 가지는 SVM을 이용한 이블 트윈 탐지 방법 (Evil-Twin Detection Scheme Using SVM with Multi-Factors)

  • 강성배;양대헌;이경희
    • 한국통신학회논문지
    • /
    • 제40권2호
    • /
    • pp.334-348
    • /
    • 2015
  • 최근 스마트기기가 널리 보급되면서 무선망이 가능한 AP(Access Point)의 사용 또한 증가하였다. AP를 사용하여 무선망에 접속할 때, 적절한 보안이 제공되지 않는다면, 로그 AP(Rogue AP)에 의해 다양한 보안 문제가 발생될 수 있다. 이 연구에서는 로그 AP의 유형 중 하나인 이블 트윈(Evil Twin)에 대한 위협에 대해서 살펴본다. 최근 대부분의 이블 트윈을 탐지하기 위한 연구에서는 RTT(Round Trip Time)와 같이 인가된 AP와 이블 트윈 사이에서 측정될 수 있는 시간 차이를 이용하는 방법이 주로 이용되고 있다. 그러나 이와 같이 이블 트윈을 탐지하는 방법은 채널이 혼잡한 상태일 때 탐지율이 떨어지는 단점이 있다. 이러한 이유에서 이 연구에서는 이블 트윈을 탐지하는 기준으로 RTT와 함께 추가로 PIAT(Packet Inter-Arrival Time)을 측정한다. 또한 측정된 값을 SVM(Support Vector Machine)의 학습 요소로 사용함으로써, 이블 트윈 분류를 위한 비선형적 기준을 정한다. 결과적으로 채널이 혼잡한 상황에서도 최대 96.5% 최소 89.75%의 높은 확률로 이블 트윈을 성공적으로 탐지하였다.

개방형 웹 서버스를 위한 증가적 얼굴 어노테이션 (Incremental Face Annotation for Open Web Service)

  • 최권택;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권8호
    • /
    • pp.673-682
    • /
    • 2009
  • 최근 Flickr, Facebook, Cyworld 처럼 사진 공유를 기반으로 하는 소셜 웹 서비스의 성공과 발달로 얼굴 검출/인식 기술을 이러한 서비스에 접목하려는 다양한 시도가 진행되고 있다. 그러나 인식률 향상에만 초점을 맞춘 기존의 일관처리 기반의 연구들은 수백만의 이용자가 수시로 접근하는 서비스에 적용하기 어렵다. 본 논문에서는 시간에 따라 증가하는 거대한 얼굴 영상 데이터베이스를 효과적으로 분류하기 위해 랜덤 사상(Random Projectio, RP) 비선형 회귀(Non-linear Regression) 그리고 REST(REpresen tational State Transfer) 규약을 사용해 새로운 증가적 얼굴 어노테이션 방법을 제안하고자 한다. 다양한 비교실험 결과에서 제안된 방법은 향상된 인식률과 낮은 계산 복잡도 기록했다. 따라서 제안된 방법은 대규모 웹서비스에 적합한 열굴 어노테이션 알고리즘이다.

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF

한국어 트위터의 감정 분류를 위한 기계학습의 실증적 비교 (An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter)

  • 임좌상;김진만
    • 한국멀티미디어학회논문지
    • /
    • 제17권2호
    • /
    • pp.232-239
    • /
    • 2014
  • 온라인에서의 글쓰기가 늘어나면서, 기계학습을 통해 이를 분류하는 연구가 늘고 있다. 그럼에도 불구하고 한국어로 작성된 마이크로블로그를 대상으로 한 연구는 많지 않다. 또한 통계적으로 기계학습을 평가한 연구를 찾아보기 힘들다. 본 논문에서는 트위터를 대상으로, 표본을 추출하고, 형태소와 음절을 자질로 사용하여 기계학습에 따라 감정을 분류하였다. 그 결과 약 76%정도 트위터에 포함된 감정이 분류되었다. Support Vector Machine이 Na$\ddot{i}$ve Bayes보다 정확했고, 선형모델도 비구조적인 텍스트 처리에 비선형모델에 상응하는 정확성을 보였다. 또한 형태소가 음절 자질에 비해 높은 정확성을 보이지 않았다.

Hourly Steel Industry Energy Consumption Prediction Using Machine Learning Algorithms

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.585-588
    • /
    • 2019
  • Predictions of Energy Consumption for Industries gain an important place in energy management and control system, as there are dynamic and seasonal changes in the demand and supply of energy. This paper presents and discusses the predictive models for energy consumption of the steel industry. Data used includes lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission and load type. In the test set, four statistical models are trained and evaluated: (a) Linear regression (LR), (b) Support Vector Machine with radial kernel (SVM RBF), (c) Gradient Boosting Machine (GBM), (d) random forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used to measure the prediction efficiency of regression designs. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.