Browse > Article
http://dx.doi.org/10.5806/AST.2011.24.6.533

2D-QSAR analysis for hERG ion channel inhibitors  

Jeon, Eul-Hye (Department of Chemistry, Hannam University)
Park, Ji-Hyeon (Department of Chemistry, Hannam University)
Jeong, Jin-Hee (Department of Chemistry, Hannam University)
Lee, Sung-Kwang (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.24, no.6, 2011 , pp. 533-543 More about this Journal
Abstract
The hERG (human ether-a-go-go related gene) ion channel is a main factor for cardiac repolarization, and the blockade of this channel could induce arrhythmia and sudden death. Therefore, potential hERG ion channel inhibitors are now a primary concern in the drug discovery process, and lots of efforts are focused on the minimizing the cardiotoxic side effect. In this study, $IC_{50}$ data of 202 organic compounds in HEK (human embryonic kidney) cell from literatures were used to develop predictive 2D-QSAR model. Multiple linear regression (MLR), Support Vector Machine (SVM), and artificial neural network (ANN) were utilized to predict inhibition concentration of hERG ion channel as machine learning methods. Population based-forward selection method with cross-validation procedure was combined with each learning method and used to select best subset descriptors for each learning algorithm. The best model was ANN model based on 14 descriptors ($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583) and the MLR model could describe the structural characteristics of inhibitors and interaction with hERG receptors. The validation of QSAR models was evaluated through the 5-fold cross-validation and Y-scrambling test.
Keywords
2D-QSAR; hERG ion channel inhibitor; machine learning; MLR; SVM; ANN; cross-validation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Bains, A. Basman and C. White, Prog. Biophys. Mol. Biol., 86(2), 205-233 (2004).   DOI   ScienceOn
2 S. K. Lee, S. H. Park, I. H. Lee and K. T. No, PreADMET Ver.v2.0, BMDRC: Seoul, Korea, 2007.
3 K. T. No, J. A. Grant, M. S. Jhon and H. A. Scheraga, J. Phys. Chem., 94(11), 4740-4746 (1990).   DOI
4 K. T. No, J. A. Grant and H. A. Scheraga, J. Phys. Chem., 94(11), 4732-4739 (1990).   DOI
5 G. Schneider, W. Neidhart, T. Giller and G. Schmid, Angew. Chem. Int. Ed. Engl., 38(19), 2894-2896 (1999).   DOI   ScienceOn
6 N. R. Draper and H. Smith, In 'Applied Regression Analysis', 2nd Ed., pp 294-379, John Wiley & Sons Inc., New York, 1981.
7 C. Cortes and V. Vapnik, Mach. Learn., 20(3), 273-297 (1995).
8 B. Schölkopf, A. J. Smola, R. C. Williamson and P. L. Bartlett, Neural Comput., 12(5), 1207-1245 (2000).   DOI   ScienceOn
9 D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature, 323(6088), 533-536 (1986).   DOI   ScienceOn
10 Rapidminer Ver.5.0, Rapid Miner is unquestionable the world-leading open-source system for data mining, Rapid-I: Dortmund, Germany, 2010.
11 B. L. Podlogar, I. Muegge and L. J. Brice, Curr. Opin. Drug Discovery Dev., 4(1), 102-109 (2001).
12 J. I. Vandenberg, B. D. Walker and T. J. Campbell, Trends Pharmacol. Sci., 22(5), 240-246 (2001).   DOI   ScienceOn
13 M. Jalaie and D. D. Holsworth, Mini-Rev. Med. Chem., 5(12), 1083-1091 (2005).   DOI   ScienceOn
14 S. B. Gunturi, K. Archana, A. Khandelwal and R. Narayanan, QSAR Combi. Sci., 27(11-12), 1305-1317 (2008).   DOI   ScienceOn
15 K. Yoshida and T. Niwa, J. Chem. Inf. Model., 46(3), 1371-1378 (2006).   DOI   ScienceOn
16 A. M. Doweyko, J. Comput.-Aided Mol. Des., 22(2), 81-89 (2008).   DOI   ScienceOn
17 K. M. Thai and G. F. Ecker, Chem. Biol. Drug Des., 72(4), 279-289 (2008).   DOI   ScienceOn