• Title/Summary/Keyword: linear Induction motor

Search Result 341, Processing Time 0.027 seconds

Optimal Design of Single-sided Linear Induction Motor Using Genetic Algorithm (유전알고리즘을 이용한 편측식 선형유도전동기의 최적설계)

  • Ryu, Keun-Bae;Choi, Young-Jun;Kim, Chang-Eob;Kim, Sung-Woo;Im, Dal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.923-928
    • /
    • 1993
  • Genetic algorithms are powerful optimization methods based on the mechanism of natural genetics and natural selection. Genetic algorithms reduce chance of searching local optima unlike most conventional search algorithms and especially show good performances in complex nonlinear optimization problems because they do not require any information except objective function value. This paper presents a new model based on sexual reproduction in nature. In the proposed Sexual Reproduction model(SR model), individuals consist of the diploid of chromosomes, which are artificially coded as binary string in computer program. The meiosis is modeled to produce the sexual cell(gamete). In the artificial meiosis, crossover between homologous chromosomes plays an essential role for exchanging genetic informations. We apply proposed SR model to optimization of the design parameters of Single-sided Linear Induction Motor(SLIM). Sequential Unconstrained Minimization Technique(SUMT) is used to transform the nonlinear optimization problem with many constraints of SLIM to a simple unconstrained problem, We perform optimal design of SLIM available to FA conveyer systems and discuss its results.

  • PDF

The Speed Control of a Single-sided Linear Induction Motor for the Automatic Conveyor system (자동 반송 시스템용 SLIM의 속도제어)

  • Jeong, B.C.;Cho, Y.H.;Lee, O.G.;Shin, D.R..;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.285-287
    • /
    • 1995
  • In the case of driving the SLIM(Single-sided Linear Induction Motor) as the VVVF inverter, the performance of SLIM, which is a thrust, normal force and so on, varies according to a slip frequency as a function of the external load. It is impossible that the open-loop control method control the speed of a SLIM accurately. So that, this paper is proposed the speed control method of a SLIM for a automatic conveyor system with the slip frequency vector control method. To analyze the dynamic characteristics of a SLIM, the state equation is derived from the equivalent circuit of the SLIM, ignored the end effect. The slip frequency and the normal force of SLIM are constantly controlled at the steady state. The simulated results is compared with the experimental values.

  • PDF

The Analysts of PerformaneeCharacterlstics of a L.I.M. with taken into Conslderatlon of End Effects(l) (단부효과를 고려한 L.I.M.의 동작특성 해석 (1))

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.288-295
    • /
    • 1982
  • In this study, the characteristic equation of a double sided short stator linear induction motor, referred to as LIM excited by equivalent current sheet having linear current density was derived using Maxwell's electromagnetic field theory with its entry and exit, end effects taken into consideration. According to the treatment of several physical phenomena in the air-gap i.e. the magnetic flux density distributions, thrust-force, forward and backward travelling wave with decay, normal field, the fundamental data in this study are made reference to improve the characteristics of LIM, effectual electro-magnetic energy conversion devices.

  • PDF

ANALYSIS of A VSI-FED INDUCTION MOTOR VECTOR CONTROL with MODEL TRACKING CONTROLLER (전압형 인버터 구동 유도전동기 벡터제어계의 모델추종제어의 해석)

  • Kim, Keun-Ha;Kim, Yong-Ju;Choe, Gyu-Ha;Kim, Han-Sung;Shin, Dae-Cheol;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.347-351
    • /
    • 1990
  • In this paper voltage source inverter(VSI)-fed induction motor vector control system is controlled by a derived model tracking controller. The system analysis is discussed from the viewpoints of ideal vector control, adoption of model tracking controller and derivation of linear model. Furthermore, the result is obtained by the model-tracking control compare with that of P-I, I-P control.

  • PDF

A Controller Design for an Induction Motor Using Fuzzy PI (Fuzzy PI를 이용한 유도전동기의 제어)

  • Park, Seong-Hun;Ko, Chang-Min;Lee, Hyun-Seok;Park, Seung-Kyu;Ahn, Ho-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1725_1726
    • /
    • 2009
  • The purpose for this paper is to obtain the ��$H_{\infty}$ LMI with fuzzy PI controller for induction motor which is nonlinear system. The controller type is PI and the control gains are obtained based on $H_{\infty}$ control problem. The PI controller is considered a part of a plant and the problem is changed to get controller with static gains. The nonlinear system is approximated as several linear systems and combined by using fuzzy technique.

  • PDF

A study on the speed characteristic of linear induction motor (유도형 리니어 모터의 속도특성에 관한 연구)

  • CHUNG B. H.;CHOI M. H.;CHO G. B.;BAEK H. L.;SEO J. Y.;KIM D. G.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.151-154
    • /
    • 2004
  • To use the SLIM for servo system, the exact account of thrust about the initial speed is needed, but analyzing by equivalent circuit analyzing methode such as rotary induction motor, the error occurs because of the end effect. So, we applied the equivalent circuit considering the end effect of SLIM in this paper. The current control system is advanced the space vector pulse width modulation by using high arithmetic performance microprocessor such as DSP. In this paper, we use the dynamic characteristic analyzing methode that can calculate efficiently the end effect by using equivalent circuit methode in the operating SLIM system modeling and examine the output characteristics of SVPWM with PI controller.

  • PDF

SVPWM Overmodulation Scheme of Three-Level Inverters for Vector Controlled Induction Motor Drives

  • Kwon, Kyoung-Min;Lee, Jae-Moon;Lee, Jin-Mok;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.481-490
    • /
    • 2009
  • This paper describes a SVPWM overmodulation scheme of NPC type three-level inverter for traction drives which extends the modulation index from MI=0.907 to unity. SVPWM strategy is organized by two operation modes of under-modulation and over-modulation. The switching states under the under-modulation modes are determined by dividing them with two linear regions and one hybrid region the same as the conventional three-level inverter. On the other hand, under the over-modulation mode, they are generated by doing it with two over-modulation regions the same as the conventional over-modulation strategy of a two level inverter. Following the description of over-modulation scheme of a three-level inverter, the system description of a vector controlled induction motor for traction drives has been discussed. Finally, the validity of the proposed modulation algorithm has been verified through simulation and experimental results.

Equivalent Circuit Constants and Characteristics Calculation of LIM by Lock test (구속시험에 의한 선형 유도 전동기의 등가회로 정수 산정 및 특성 계산)

  • 김규탁;강규홍;최태희;이정규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.580-586
    • /
    • 1994
  • The equivalent circuit of linear induction motor is generally expressed as the same that of rotary induction motor. However, it is almost impossible to perform the no-load test for LIM, because it needs a special equipment for synchronous speed. Therefore, a new method is reqnired to calculate the performance of the LIM without the no-load test. In this paper, The new method which does not need no-load test for the chanracteristics analysis of LIM is proposed. The equivalent circuit of LIM is chosen and the method if determining its constants from results of the lock test is discussed. The calculated results were satisfied by compare with experimental and conventional method results.

The Wide-Range Speed Control of Induction Motor using Fuzzy Reasoning (퍼지 추론을 이용한 유도 전동기의 광대역 속도 제어)

  • 최홍규;강태은;송영주;김병철;전광호
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.69-76
    • /
    • 2003
  • In this paper, a novel speed control system that implements the fuzzy logic controller(FLC) is proposed. Fuzzy controller is shown more excellent efficency than a conventional controllers in the strength aspect and non-linear controller using IF-THEN rule which can control without process the accurate mathematical modeling about induction motor. But we cannot expect that conventional fuzzy controller divide equally the space of input and output parameter and use the certain shape of triangle membership function. Therefore to develop the efficiency of conventional fuzzy controller, We need to scale the range of membership functions. In this study, proposed fuzzy controller has the ability controlling scale of membership functions using by output scaling factor.

  • PDF

Control Mode Switching of Induction Machine Drives between Vector Control and V/f Control in Overmodulation Range

  • Nguyen, Thanh Hai;Van, Tan Luong;Lee, Dong-Choon;Park, Joo-Hong;Hwang, Joon-Hyeon
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.846-855
    • /
    • 2011
  • This paper proposes a control mode switching scheme between vector control and constant V/f control for induction machine (IM) drives for maximum torque utilization in a higher speed region. For the constant V/f scheme, a smooth transition method from the linear range of PWM up to the six-step mode is applied, by which the machine flux and torque can be kept constant in a high-speed range. Also, a careful consideration of the initial phase angle of the voltage in the transient state of the control mode change between the vector control and V/f schemes is described. The validity of the proposed strategy is verified by the experiment result for a 3-kW induction motor drives.