• Title/Summary/Keyword: linear Decoding

Search Result 79, Processing Time 0.019 seconds

Design of New Closed-Loop Spatial Multiplexing System Using Linear Precoder (선형 선부호기를 이용한 새로운 폐루프 공간 다중화 시스템 설계)

  • Chae, Chang-Hyeon;Choi, Dae-Won;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.44-49
    • /
    • 2008
  • Recently, a so called orthogonal spatial multiplexing(OSM) scheme was presented which allows simple maximum likelihood decoding at the receiver with single phase feedback In this paper, by serially concatenating this scheme by a linear precoder, a new closed-loop SM scheme is proposed for two transmit arid two receive antennas. By computer simulation results, we show that the proposed scheme outperforms the conventional SM and OSM. For the proposed code, we also propose a new simple decoding algorithm which leads to a greatly reduced decoding complexity compared with the ML receiver without any loss of error performance.

Nonlinear Product Codes and Their Low Complexity Iterative Decoding

  • Kim, Hae-Sik;Markarian, Garik;Da Rocha, Valdemar C. Jr.
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.588-595
    • /
    • 2010
  • This paper proposes encoding and decoding for nonlinear product codes and investigates the performance of nonlinear product codes. The proposed nonlinear product codes are constructed as N-dimensional product codes where the constituent codes are nonlinear binary codes derived from the linear codes over higher order alphabets, for example, Preparata or Kerdock codes. The performance and the complexity of the proposed construction are evaluated using the well-known nonlinear Nordstrom-Robinson code, which is presented in the generalized array code format with a low complexity trellis. The proposed construction shows the additional coding gain, reduced error floor, and lower implementation complexity. The (64, 24, 12) nonlinear binary product code has an effective gain of about 2.5 dB and 1 dB gain at a BER of $10^{-6}$ when compared to the (64, 15, 16) linear product code and the (64, 24, 10) linear product code, respectively. The (256, 64, 36) nonlinear binary product code composed of two Nordstrom-Robinson codes has an effective gain of about 0.7 dB at a BER of $10^{-5}$ when compared to the (256, 64, 25) linear product code composed of two (16, 8, 5) quasi-cyclic codes.

Improved Initial Image Estimation Method for a Fast Fractal Image Decoding (고속 프랙탈 영상 부호화를 위한 개선한 초기 영상 추정법)

  • Jeong, Tae-Il;Gang, Gyeong-Won;Mun, Gwang-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.68-75
    • /
    • 1997
  • In this paper, we propose the improved initial image estimation method for a fast fractal image decoding. When the correlation between a domain and a range is given as the linear equation, the value of initial image estimation using the conventional method is the intersection between its linear equation and y=x. If the gradient of linear equation is large, that the difference of the value between each adjacent pixels is large, the conventional method has disadvantage which has the impossibility of exact estimation. The method of the proposed initial image estimation performs well by two steps. he first step can improve the disadvantage of the conventional method. The second step upgrades the range value which was found previous step by referring information of its domain. Though the computational complexity for the initial image estimation increses slightly, the total computational complexity decreases by 30% than that of the conventional method because of diminishing in the number of iterations.

  • PDF

Scalable Fingerprinting Scheme based on Angular Decoding for LCCA Resilience (선형결합 공모공격에 강인한 각도해석 기반의 대용량 핑거프린팅)

  • Seol, Jae-Min;Kim, Seong-Whan
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.713-720
    • /
    • 2008
  • Fingerprinting scheme uses digital watermarks to trace originator of unauthorized or pirated copies, however, multiple users may collude and escape identification by creating an average or median of their individually watermarked copies. Previous research works are based on ACC (anti-collusion code) for identifying each user, however, ACC are shown to be resilient to average and median attacks, but not to LCCA and cannot support large number of users. In this paper, we propose a practical SACC (scalable anti-collusion code) scheme and its angular decoding strategy to support a large number of users from basic ACC (anti-collusion code) with LCCA (linear combination collusion attack) robustness. To make a scalable ACC, we designed a scalable extension of ACC codebook using a Gaussian distributed random variable, and embedded the resulting fingerprint using human visual system based watermarking scheme. We experimented with standard test images for colluder identification performance, and our scheme shows good performance over average and median attacks. Our angular decoding strategy shows performance gain over previous decoding scheme on LCCA colluder set identification among large population.

Detection Scheme Based on Gauss - Seidel Method for OTFS Systems (OTFS 시스템을 위한 Gauss - Seidel 방법 기반의 검출 기법)

  • Cha, Eunyoung;Kim, Hyeongseok;Ahn, Haesung;Kwon, Seol;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.244-247
    • /
    • 2022
  • In this paper, the performance of the decoding schemes using linear MMSE filters in the frequency and time domains and the reinforcement Gauss-Seidel algorithm for the orthogonal time frequency space (OTFS) system that can improve robustness under high-speed mobile environments are compared. The reinforcement Gauss-Seidel algorithm can improve the bit error rate performance by suppressing the noise enhancement. The simulation results show that the performance of the decoding scheme using the linear MMSE filter in the frequency domain is severely degraded due to the effect of Doppler shift as the mobile speed increases. In addition, the decoding scheme using the reinforcement Gauss-Seidel algorithm under the channel environment with 120 km/h and 500 km/h speeds outperforms the decoding schemes using linear MMSE filters in the frequency and time domains.

Comparison of Parallelized Network Coding Performance (네트워크 코딩의 병렬처리 성능비교)

  • Choi, Seong-Min;Park, Joon-Sang;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.19C no.4
    • /
    • pp.247-252
    • /
    • 2012
  • Network coding has been shown to improve various performance metrics in network systems. However, if network coding is implemented as software a huge time delay may be incurred at encoding/decoding stage so it is imperative for network coding to be parallelized to reduce time delay when encoding/decoding. In this paper, we compare the performance of parallelized decoders for random linear network coding (RLC) and pipeline network coding (PNC), a recent development in order to alleviate problems of RLC. We also compare multi-threaded algorithms on multi-core CPUs and massively parallelized algorithms on GPGPU for PNC/RLC.

Nonbinary Convolutional Codes and Modified M-FSK Detectors for Power-Line Communications Channel

  • Ouahada, Khmaies
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.270-279
    • /
    • 2014
  • The Viterbi decoding algorithm, which provides maximum - likelihood decoding, is currently considered the most widely used technique for the decoding of codes having a state description, including the class of linear error-correcting convolutional codes. Two classes of nonbinary convolutional codes are presented. Distance preserving mapping convolutional codes and M-ary convolutional codes are designed, respectively, from the distance-preserving mappings technique and the implementation of the conventional convolutional codes in Galois fields of order higher than two. We also investigated the performance of these codes when combined with a multiple frequency-shift keying (M-FSK) modulation scheme to correct narrowband interference (NBI) in power-line communications channel. Themodification of certain detectors of the M-FSK demodulator to refine the selection and the detection at the decoder is also presented. M-FSK detectors used in our simulations are discussed, and their chosen values are justified. Interesting and promising obtained results have shown a very strong link between the designed codes and the selected detector for M-FSK modulation. An important improvement in gain for certain values of the modified detectors was also observed. The paper also shows that the newly designed codes outperform the conventional convolutional codes in a NBI environment.

An Efficient Soft Decision Decoding Method for Block Codes (블록 부호에 대한 효율적인 연판정 복호기법)

  • 심용걸
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • In this paper, we propose an efficient soft decision decoding algorithm for linear block codes. A conventional soft decision decoder have to invoke a hard decision decoder several times to estimate its soft decision values. However, in this method, we may not have candidate codewords, thus it is very difficult to produce soft decision values. We solve this problem by introducing an efficient algorithm to search candidate codewords. By using this, we can highly reduce the cases we cannot find candidate codewords. We estimate the performance of the proposed algorithm by using the computer simulations. The simulation is performed for binary (63, 36) BCH code in fading channel.

  • PDF

New Simplified Sum-Product Algorithm for Low Complexity LDPC Decoding (복잡도를 줄인 LDPC 복호를 위한 새로운 Simplified Sum-Product 알고리즘)

  • Han, Jae-Hee;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.322-328
    • /
    • 2009
  • This paper proposes new simplified sum-product (SSP) decoding algorithm to improve BER performance for low-density parity-check codes. The proposed SSP algorithm can replace multiplications and divisions with additions and subtractions without extra computations. In addition, the proposed SSP algorithm can simplify both the In[tanh(x)] and tanh-1 [exp(x)] by using two quantization tables which can reduce tremendous computational complexity. Moreover, the simulation results show that the proposed SSP algorithm can improve about $0.3\;{\sim}\;0.8\;dB$ of BER performance compared with the existing modified sum-product algorithms.

A Performance Analysis of Random Linear Network Coding in Wireless Networks (무선 환경의 네트워크에서 랜덤 선형 네트워크 코딩 적용 성능 분석)

  • Lee, Kyu-Hwan;Kim, Jae-Hyun;Cho, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.830-838
    • /
    • 2011
  • Recently, studies for the network coding in the wireless network to achieve improvement of the network capacity are conducted. In this paper, we analysis considerations to apply RLNC in the wireless network. First of all, we verify whether the RLNC method in multicast is applied to distributed wireless network. In simulation results, the decoding failure can occur in the original manner of multicast. In RLNC which conducts encoding and decoding in X topology to gets rid of the decoding failure, the RLNC gain is insignificant. In this paper we also discuss considerations such as the hidden node problem, the occurrence of coding opportunity, and the RLNC overhead which are practical issues in the wireless network.