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This paper proposes encoding and decoding for 
nonlinear product codes and investigates the performance 
of nonlinear product codes. The proposed nonlinear 
product codes are constructed as N-dimensional product 
codes where the constituent codes are nonlinear binary 
codes derived from the linear codes over higher order 
alphabets, for example, Preparata or Kerdock codes. The 
performance and the complexity of the proposed 
construction are evaluated using the well-known nonlinear 
Nordstrom-Robinson code, which is presented in the 
generalized array code format with a low complexity trellis. 
The proposed construction shows the additional coding 
gain, reduced error floor, and lower implementation 
complexity. The (64, 24, 12) nonlinear binary product code 
has an effective gain of about 2.5 dB and 1 dB gain at a 
BER of 10-6 when compared to the (64, 15, 16) linear 
product code and the (64, 24, 10) linear product code, 
respectively. The (256, 64, 36) nonlinear binary product 
code composed of two Nordstrom-Robinson codes has an 
effective gain of about 0.7 dB at a BER of 10-5 when 
compared to the (256, 64, 25) linear product code 
composed of two (16, 8, 5) quasi-cyclic codes.  
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I. Introduction 

Turbo product codes represent a class of codes that allow 
near Shannon limit performance with reasonable complexity 
[1]. Because of these attractive properties, turbo codes are 
incorporated in a number of international standards such as the 
IEEE 802.16 [2], the ETSI HiperMAN [3], and the HomePlug 
[4]. Recently, a new IEEE 802.16m standard was initiated [5], 
aiming at developing an enhanced version of the IEEE 802.16e 
[6], which could lead to the second phase of WiMAX systems. 
One of the major requirements for these systems is the 
transmission of short packets of data with increased reliability 
due to higher mobility specifications. Conventional error- 
correcting coding schemes, such as the low-density parity 
check (LDPC) codes [7], turbo convolutional codes (TCC) [8], 
and linear turbo product codes [1], are not well-suited for such 
application and result in higher error floor levels [9]. 

The aim of this paper is to develop a new class of nonlinear 
binary product codes (NBPCs), propose their low-complexity 
iterative decoding, which will allow an overall performance 
improvement with reduced implementation complexity and 
lower error floor for short codes, and investigate their 
performance. To achieve this goal, nonlinear codes are used as 
constituent codes, which are binary images of linear codes over 
higher order alphabets. These constituent codes can be the 
well-known Preparata codes [10], Kerdock codes [11], or any 
other code with similar properties. For a given code rate, these 
codes allow higher minimum Hamming distance, which 
eventually improves overall code performance. To reduce the 
overall decoding complexity, the constituent codes are 
represented as generalized array codes (GAC) with low- 
complexity trellises, which are used for iterative decoding of 
the constituent codes. Recently, a paper analysing theoretical 
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bounds of nonlinear product codes was published in [12]. One 
month earlier, nonlinear product code construction and iterative 
decoding were published in [13]. The theoretical results 
presented in [12] and construction and decoding presented in 
[13] are expanded by developing low complexity iterative 
decoding for the nonlinear binary product code and describing 
their practical implementation. To evaluate the performance of 
the proposed construction, the well known Nordstrom-
Robinson (NR) code [14] is used as a constituent code. 
However, these results are applicable to other known nonlinear 
codes with similar properties. 

This paper is organized as follows. In section II, the NR code 
construction using a GAC is proposed and the associated trellis 
diagram is presented. In section III, a family of nonlinear product 
codes is designed, the first instance of which is composed of an 
NR code and a single parity check (SPC) code, and the second 
instance of which is composed of two NR codes. In addition, a 
low-complexity decoding algorithm suitable for nonlinear 
product codes using Max-log MAP and majority logic decoding 
(MLD) is shown. It is shown in section IV by means of a 
computer simulation that the bit error rate performance of this 
nonlinear product code construction is better than that of a 
comparable linear product code. Finally, in section V, the 
simulation results using nonlinear product codes are discussed. 

II. NR Code Construction and Trellis Diagram 

1. NR Code Derived from the Linear (8, 4, 4) Code over Z4 

In [15], it was shown that binary nonlinear codes such as the 
NR, Kerdock, and Preparata codes can be derived from linear 
codes over Z4, the ring of integers modulo-4. For example, it is 
possible to express the generator matrix for the systematic   
(8, 4, 4) NR parent code over Z4 as follows [16]: 

NR

1 0 0 0 3 1 2 1
0 1 0 0 2 1 1 3

.
0 0 1 0 1 1 3 2
0 0 0 1 3 2 3 3
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In order to construct the systematic NR code, the first 
codeword of the parent code over Z4 is obtained by 
multiplying a Z4 message vector by the parent code generator 
matrix GNR. 

The codewords of the NR code are obtained by mapping the 
parent code codewords over Z4 into binary format, using Gray 
mapping as illustrated in Table 1. 

This is a well-known construction that allows low 
complexity encoding. However, the trellis complexity of this 
construction is too high and not suitable for practical 
implementation. 

2. NR Code as a Generalized Array Code 

In [17], the (8, 4, 4) NR code was expressed as a generalized 
array code construction, and its trellis decoder was proposed. In 
this section, the binary NR code is represented using a GAC 
construction. The NR code, CNR, can be represented as 
CNR=C1+C2, where C1 is the (16, 5, 8) first-order Reed-Muller 
(RM) code and C2 is a nonlinear code with 8 codewords [18]. 
The C1 (16, 5, 8) code can be designed as a GAC with the 
following structure [19]: 
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where x1, x2, x3, x4, and x5 are information bits, “+” denotes a 
modulo-2 addition (XOR operation), and p1 represents the 
parity check symbol computed as 

3211 xxxp ++= . 
The codewords are transmitted row by row: C1= [x1, x4+x1, 

x5+x1, x4+x5+x1, x2, x4+x2, x5+x2, x4+x5+x2, x3, x4+x3, x5+x3, 
x4+x5+x3, p1, x4+p1, x5+p1, x4+x5+p1]. 

The nonlinear code C2 with 8 codewords should have the 
following two-dimensional structure: 
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where x6, x7, and x8 are information bits, “×” denotes a 
modulo-2 multiplication (AND operation), and p2 represents 
the parity check symbol computed as 

8762 xxxp ++= . 
Therefore, the NR code is constructed as  
 

Table 1. Gray mapping. 

Gray mapping 

Z4 Binary 

0 00 

1 01 

2 11 
3 10 
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Fig. 1. Distance distribution of the NR code as GAC. 
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and the transmission of a codeword is performed row by row.  
When handling a nonlinear code, the code distance 

distribution is more significant than the corresponding weight 
distribution because the minimum distance can be obtained 
from the former, while the latter apparently cannot generally 
provide any relevant information [18]. The Hamming distance 
distribution of a code C of length n is the set 
{ ( ) 0 },iB C i n≤ ≤  where  

1( ) { ( , ) } ,i
c C

B C v C d v c i
C ∈

= ∈ =∑  

and d(v,c) denotes the Hamming distance between c and v [18]. 
The distance distribution of the NR code is shown in Fig. 1 

where x and y correspond to i and Bi(C), respectively. The NR 
code has the property that its Hamming distance distribution 
coincides with its weight distribution [18]. 

3. Trellis Diagram of NR Code 

Two trellis diagrams for the NR code are shown in Figs. 2(a)  

 

Fig. 2. Trellis diagram of NR code (a) derived from the code over 
Z4 and (b) NR code as GAC. 
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Table 2. State complexity for NR code trellises. 

 
Systematic NR code derived 

from a code over Z4 
Non-systematic 

NR code as GAC
State-cardinality 

profile {1, 256, 1} {1, 64, 64, 64, 1}

Max number of 
states 256 64 

Total number of 
states 258 194 

Logarithmic state 
complexity profile {0, 8, 0} {0, 6, 6, 6, 0} 

State complexity 8 6 

Total span 8 18 

 

and 2(b), respectively. Figure 2(a) shows the trellis diagram of 
the systematic NR code derived from the code over Z4 with 2 
sections, 256 states, and 8 coded bits for each branch [20]. 
Figure 2(b) shows the trellis diagram of the non-systematic NR 
code designed as a GAC with 4 sections, 64 states, and 4 coded  
bits for each branch. Furthermore, in Fig. 2(b), note that the 
trellis is a coset trellis [21], [22] composed of the first order RM 
code (16, 5, 8) and the codewords of the nonlinear code (16, 3, 
6) as coset leaders. 

4. Complexity Comparison of NR Code Trellises 

The decoding complexity depends on the specific algorithm 
being used and can be often reduced by means of 
computational techniques, including gray coding, efficient 
processing of parallel transitions, and recursive decoding of 
sub-trellises [23]. In this section, the trellis complexity measure 
as defined in [18] is used. Tables 2 and 3 summarize the major 
parameters of the designed trellises and provide complexity 
estimation. 

If a trellis is implemented in hardware, 2s is the number of  
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 Table 3. Edge (branch) complexity for NR code trellises. 

 
Systematic NR code  
derived from a code  

over Z4 

Non-systematic NR 
code as GAC 

Edge-cardinality 
profile {2048, 2048} {256, 1024, 1024, 256}

Max number of 
edges 2048 1024 

Total number of 
edges 4096 2560 

Logarithmic edge 
complexity profile {11, 11} {8, 10, 10, 8} 

Edge complexity 11 10 

Total edge span 22 36 

Table 4. Expansion index and Viterbi decoding complexity for NR
code trellises. 

 
Systematic NR code 
derived from a code 

over Z4 

Non-systematic NR 
code as GAC 

Expansion index 
( 1)E E V= − +  

3841 2367 

Viterbi decoding 
complexity 

( 2 1)D E V= − +  
7937 4927 

Table 5. State-complexity comparison of Nordstrom-Robinson code
trellises. 

Non-systematic NR code Trellis {1 64 64 64 1} 

Systematic NR code Trellis {1 256 1} 
NR Code Trellis by  

A. Lafourcade and A. Vardy [27] 
{1 2 4 8 16 32 48 96 64 96 48 32 

16 8 4 2 1} 

NR Code Trellis by Forney [27] 
{1 2 4 8 16 32 64 128 64 128 64 

32 16 8 4 2 1} 

 

add-compare-select (ACS) circuits that one has to put on a chip 
[24], where s denotes the state complexity. In [25], the total 
number of edges in the trellis is the most meaningful measure 
of Viterbi decoding complexity. Therefore, as illustrated in 
Table 4, the complexity of the developed non-systematic NR 
code is lower in comparison with that of the conventional 
systematic NR code derived from a code over Z4. In Table 4, 
|E| and |V| denote the total number of edges and the total 
number of states, respectively. Minimal trellises for nonlinear 
codes are generally computationally intractable, and the 
solutions leading to this minimization may result in improper 
or unobservable trellises [26]. 

State complexity comparison of NR code trellises is shown  

 

Fig. 3. (a) Transmitter and (b) receiver for the nonlinear product 
code composed of NR code as GAC and single parity 
check. 
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in Table 5. The maximum numbers of states for the non-
systematic NR trellis, the systematic NR code trellis, the NR 
codes trellis by Lafourcade and Vardy, and the NR code by 
Forney are 64, 256, 96, and 128, respectively. The total 
numbers of states for them are 194, 258, 478, and 574, 
respectively. A trellis which has a minimum number of states 
(Vertices) is called a minimal trellis. Therefore, the non-
systematic NR code trellis is close to the minimal trellis. 

III. Nonlinear Product Code Design 

1. Nonlinear Product Code Composed of NR Code and SPC 
Code 

Firstly, a nonlinear product code composed by the (16, 8, 6) 
NR code as a row code and the (4, 3, 2) SPC code as a column 
code is designed for the sake of simplicity. In this nonlinear 
product code, the GAC representation of the NR code is used. 
Therefore, the first, second, and third rows are non-systematic 
NR codewords, and the last row is a parity (on columns) of the 
SPC code.  

Figure 3(a) shows the block diagram of the transmitter which 
was used to simulate the designed nonlinear product code. In 
Fig. 3(a), a random binary vector bi is encoded into the NR 
codeword xi, represented as a GAC, and assigned as a row 
code. Then the xi’s are encoded into vi using the SPC code as a 
column code. The corresponding codeword ci belongs to a 
nonlinear product code with the parameters (64, 24, 12) =   
(16, 8, 6) × (4, 3, 2) the minimum distance of which is 
calculated in [12]. Figure 3(b) describes the receiver system. 
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Assuming that the channel is disturbed by the additive white 
Gaussian noise (AWGN), ci′ is the possibly corrupted received 
codeword which, after BPSK demodulation, is represented by 
ri, that is, the soft value of the received sequence. At first the 
branch metric b(s′, s) is calculated in the row Max-log MAP 
decoder, where s′ and s denote the previous state and the 
current state, respectively. This is expressed as  

∑
−

=

+

−⋅=
11

)12()),'((log
i

i

i

t

tl
llt vrssbγ ,

 
where ti denotes the time instant. Secondly, the forward state 
metric         and the backward state metric         are 
calculated. They can be expressed as follows: 

1 1
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where 
1it −

Ω denotes the set of the previous states s′ connected 
with the current state s. Thirdly, the log likelihood ratio (LLR) 
Lr(vl) is calculated using the equation: 
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where 1.i it l t +≤ ≤  For each coded bit vl in a branch, Lr(vl) is 
calculated [28]. The output of the row Max-log MAP decoder, 
Lr(vl), is multiplied by wf1i, which is the weighting factor to 
adjust the effect of the LLR value. The extrinsic information, 
Exi, is obtained by subtracting the soft input of Max-log MAP 
decoder from the soft output of Max-log MAP decoder: 

1 ( )i i r i iEx wf L R R= − , 

where Ri is the soft input of Max-log MAP decoder. 
The input of the column Max-log MAP decoder is obtained 

by adding the received sequence ri with the extrinsic 
information, that is,   

2c i i iR r wf Ex= + , 

where wf2i is the weighting factor to adjust the extrinsic 
information. The experimental results indicate that the 
performance of turbo product codes is very sensitive to the 
weighting factors, and the evolution of the weighting factors is 
as  

1 [0.2 0.4 0.6 0.8 1.0]iwf = , 

2 [0.4 0.5 0.6 0.7 0.8 0.9 1.0]iwf = . 

The column Max-log MAP decoder can be implemented in 
the same manner as the row Max-log MAP decoder.   

 

Fig. 4. (a) Transmitter and (b) receiver for nonlinear product code 
composed of two NR codes derived from the code over 
Z4. 
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The above decoding process is carried out for each row of 
code and then for each column of code and iterated several 
times to reduce the error probability. After the SISO decoding 
using the Max-log MAP algorithm is completed, the turbo 
product code decoder still needs a post-decoding algorithm 
because the output of the turbo product code decoder must be a 
codeword. The following describes how to employ a majority 
logic decoder at this stage. It is possible to carry out the MLD 
of the NR code, represented in GAC form. For example, the 
elements c2, c5, c6, c10, and c14 of an NR codeword in GAC 
form are chosen and then added: 

2 5 6 10 14

4 1 6 2 2 4 2 8 7 8

4 3 7 7 8 4 1 2

( ) ( ) ( )
( ) ( ) .

c c c c c
x x x x p x x x x x

x x x x x x p x

+ + + +

= + + + + + + + + ×
+ + + + × + + =

 

Likewise, several estimates of x2 can be found using other 
combinations of digits, and x2 can be extracted through MLD. 
In a similar way, the other information digits are extracted, and 
the decoded information bits can be obtained. 

2. Nonlinear Product Code Composed of Two NR codes 

One of two constituent codes must be a systematic code in 
order to construct the product code. Therefore, a systematic 
parent NR code derived from a code over Z4 is used. The 
generator matrix for the parent NR code derived from a code 
over Z4, which is a linear code, is in systematic form. 
Therefore, nonlinear product codes can be designed which 
are composed of two parent NR codes derived from a code 
over Z4. In Fig. 2(a), the trellis diagram of the parent NR 
code has two sections. The first section is the information part, 

)(log s
it

α )(log s
it

β
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and the second section is the parity part. Therefore, the Max- 
log MAP decoding algorithm can be applied with two 
sections. 

In Fig. 4, ci′ is the received sequence which, after BPSK 
demodulation, produces ri, the soft decision value of the 
received sequence. At first the branch metric is calculated as  

8
info

1

( ) (2 1)i l l
l

B s r v
=

= ⋅ −∑ , 

16
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9
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info parity( ) ( ) ( ),i i iB s B s B s= +  

where Binfo (si) and Bparity (si) are the first information section 
branch metric and the second parity section branch, 
respectively, and si denotes the state 0 ≤ si ≤ 255. The 
forward state metric ( )i isα  and the backward state 
metric ( )i isβ  are calculated as follows: 
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Finally, the LLR Lr(vl) is calculated as  
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Therefore, the LLR can be simply expressed as  

{ } { }
1,0 255 0,0 255

( ) max ( ) max ( )
l i l i

l i iv s v s
L v B s B s

= ≤ ≤ = ≤ ≤
= − . 

For each coded bit, L(vl) is calculated. The remaining 
decoding steps are the same as for the nonlinear product code 
composed of the NR code and the SPC code, except for the use 
of MLD. Although MLD is carried out for the NR code as a 
GAC caused by permuted codewords, MLD is not needed for 
the parent NR code derived from a code over Z4. 

IV. Simulation 

A computer simulation was carried out to compare the   
(64, 24, 12) nonlinear product code composed of the (16, 8, 6)     

 

Fig. 5. Comparison of (64, 24, 12) nonlinear product code and 
(64, 15, 16) and (64, 24, 10) linear product codes after 3 
iterations. 
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Fig. 6. Comparison of (256, 64, 36) nonlinear product code 
(NR×NR) and (256, 64, 25) linear product code 
(QC×QC) after 4 iterations. 
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NR code and the (4, 3, 2) SPC code, with the (64, 15, 16) linear 
product code composed of the (16, 5, 8) RM code and the   
(4, 3, 2) SPC code, and the (64, 24, 10) linear product code 
composed of the (16, 8, 5) quasi-cyclic (QC) code [29] and the 
(4, 3, 2) SPC code, under AWGN conditions.  

Figure 5 shows the simulation results. At a bit error rate 
(BER) of 10-6, the (64, 24, 12) nonlinear product code Eb/N0 is 
5.7 dB, and the (64, 15, 16) and (64, 24, 10) linear product codes 
for the corresponding Eb/N0 are 6.2 dB and 6.7 dB, respectively. 
Besides, in order to compare the (64, 24, 12) nonlinear product 
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code with the (64, 15, 16) linear product code at the same data 
rate, one has to consider the difference between the code rates 
[30]. Once this 10log10 ((24/64)/(15/64))≈2 dB is considered, it 
is evident that the nonlinear product code has about effective 
2.5 dB gain (actual 0.5 dB gain) and 1 dB gain, respectively, 
and better low error rate performance.  

The simulation results of the (256, 64, 36) nonlinear product 
code composed of two (16, 8, 6) NR codes and the (256, 64, 25) 
linear product code composed of two (16, 8, 5) QC codes are 
shown in Fig. 6. The nonlinear product code has a waterfall 
region between 3 dB and 4 dB but the waterfall region of the 
linear product code falls outside this range. At a BER of 10-5, the 
nonlinear product code Eb/N0 is 3.5 dB, and the linear product 
codes the corresponding Eb/N0 is 4.2 dB. The nonlinear product 
code has about 0.7 dB gain due to better hamming distance. 

V. Conclusion 

A new technique for low-complexity encoding and decoding 
of nonlinear binary product codes has been proposed. The 
technique takes advantage of the well-known Preparata, 
Kerdock, Nordstrom-Robinson codes, or any other code with 
similar properties. In this paper, the attractiveness of these 
codes was enhanced by developing their low-complexity 
trellises and low-complexity decoders. To evaluate the 
performance of the proposed construction, the binary NR code 
construction using a GAC was proposed, and a number of low- 
complexity nonlinear product codes were developed. In 
addition, a low-complexity decoding algorithm was proposed 
for the developed nonlinear binary product codes, and their 
performance improvement was demonstrated upon 
comparison to the best known linear binary product codes with 
the same block length. In the first simulation, the (64, 24, 12) 
nonlinear binary product code has an effective gain of about 
effective 2.5 dB and 1 dB gain at BER 10-6 and lower error rate 
values. In the second simulation, the (256, 64, 36) nonlinear 
binary product code composed of two NR codes has about  
0.7 dB gain at BER 10-5. These additional gains, due to better 
minimum distance, can be transferred into the higher data rate 
or lower error rate of product codes which make them more 
attractive for practical application.  
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