• Title/Summary/Keyword: line-width

Search Result 1,547, Processing Time 0.025 seconds

Comparison of Commercial Multi-use Mask Patterns for Korean Adult Women

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.185-193
    • /
    • 2022
  • This study attempted to compare and analyze the commercially available multi-use patterns to develop mask patterns suitable for the face types of adult women. Through this, it was intended to provide necessary data to mask pattern development and products. As a results of comparing the dimensions and shapes of commercial multi-use mask patterns, there was a significant difference in dimensions even though it was a L-size mask manufactured for adults. As a result of the appearance evaluation of the virtual outfit, there were significant differences by design in the vertical of the center front line, the cover and space of the mask, the height of the nose, and the lower part of the mask. The side also showed significant differences in the covering of the side of the face, the space of the side, and the width and length of the string. As a result of the appearance evaluation, Mask 4 received the best evaluation. The shape of the mask pattern had a large dart in the lower part of the nose so that it can cover the three-dimensional shape of the face, but there was a difference in the degree and angle of the curve depending on the mask. Although the upper part of the mask, the lower part of the mask, and the cheek part are in close contact, the evaluation of the mask pattern, which has room in the nose and mouth, was high. It is thought that the mask pattern should be set according to the upper length, lower length, and nose height of the mask through analysis of the face shape and dimensions.

Investigating the Effect of Photoinitiator Types and Contents on the Photocuring Behavior of Photocurable Inks and Their Applications for Etching Resist Inks (광개시제 종류 및 함량에 따른 광경화형 잉크의 광경화 특성과 인쇄회로기판용 에칭 레지스트 소재로의 적용성 연구)

  • Bo-Young Kim;Subin Jo;Gwajeong Jeong;Seong Dae Park;Jihoon Kim;Eui-Keun Choi;Myong Jae Yoo;Hyunseung Yang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • As electronic devices become smaller and more integrated, the demand for manufacturing thin, flexible printed circuit boards (FPCBs) has increased. Although FPCBs are conventionally manufactured by a photolithography method using dry film resist, this process is complicated, and the mask is specifically designed to obtain the precision of the desired circuit line width. In this regard, manufacturing FPCBs with fine patterns through the direct printing method of photocurable inks has gained growing attention. Since the manufacturing process of FPCBs is based on the direct printing method that includes etching and stripping processes utilizing acid and basic chemicals, controlling the adhesion strength, the etching resistance, and the strippability of photocured inks has drawn a lot of attention for the fabrication of fine patterns through photocurable inks. In this study, acrylic ink with various types and contents of the photoinitiator was prepared, and the curing behavior was analyzed. Also, the adhesion strength, etching resistance, and strippability were analyzed to evaluate the applicability of developed photocurable etching resist inks.

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

Usability of Multiple Confocal SPECT SYSTEM in the Myocardial Perfusion SPECT Using $^{99m}Tc$ ($^{99m}Tc$을 이용한 심근 관류 SPECT에서 Multiple Confocal SPECT System의 유용성)

  • Shin, Chae-Ho;Pyo, Sung-Jai;Kim, Bong-Su;Cho, Yong-Gyi;Jo, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2011
  • Purpose: The recently adopted multiple confocal SPECT SYSTEM (hereinafter called IQ SPECT$^{TM}$) has a high difference from the conventional myocardial perfusion SPECT in the collimator form, image capture method, and image reconstruction method. This study was conducted to compare this novice equipment with the conventional one to design a protocol meeting the IQ SPECT, and also determine the characteristics and usefulness of IQ SPECT. Materials and Methods: 1. For the objects of LEHR (Low energy high resolution) collimator and Multiple confocal collimator, $^{99m}Tc$ 37MBq was put in the acrylic dish then each sensitivity ($cpm/{\mu}Ci$) was measured at the distance of 5 cm, 10 cm, 20 cm, 30 cm, and 40 cm respectively. 2. Based on the sensitivity measure results, IQ SPECT Protocol was designed according to the conventional general myocardial SPECT, then respectively 278 kBq/mL, 7.4 kBq/mL, and 48 kBq/mL of $^{99m}Tc$ were injected into the myocardial and soft tissues and liver site by using the anthropomorphic torso phantom then the myocardial perfusion SPECT was run. 3. For the comparison of FWHMs (Full Width at Half Maximum) resulted from the image reconstruction of LEHR collimator, the FWHMs (mm) were measured with only algorithms changed, in the case of the FBP (Filtered Back projection) method- a reconstruction method of conventional myocardial perfusion SPECT, and the 3D OSEM (Ordered subsets expectation maximization) method of IQ SPECT, by using $^{99m}Tc$ Line source. Results: 1. The values of IQ SPECT collimator sensitivity ($cpm/{\mu}Ci$) were 302, 382, 655, 816, 1178, and those of LEHR collimator were measured as 204, 204, 202, 201, 198, both at the distance of 5 cm, 10 cm, 20 cm, 30 cm, and 40 cm respectively. It was found the difference of sensitivity increases up to 4 times at the distance of 30 cm in the cases of IQ SPECT and LEHR. 2. The myocardial perfusion SPECT Protocol was designed according to the geometric characteristics of IQ SPECT based on the sensitivity results, then the phantom test for the aforesaid protocol was conducted. As a result, it was found the examination time can be reduced 1/4 compared to the past. 3. In the comparison of FWHMs according to the reconstructed algorithm in the FBP method and 3D OSEM method followed after the SEPCT test using a LEHR collimator, the result was obtained that FWHM rose around twice in the 3D OSEM method. Conclusion : The IQ SPECT uses the Multiple confocal collimator for the myocardial perfusion SPECT to enhance the sensitivity and also reduces examination time and contributes to improvement of visual screen quality through the myocardial-specific geometric image capture method and image reconstruction method. Due to such benefits, it is expected patients will receive more comfortable and more accurate examinations and it is considered a further study is required using additional clinical materials.

  • PDF

Dose Distribution of Co-60 Photon Beam in Total Body Irradiation (Co-60에 의한 전신조사시 선량분포)

  • Kang, Wee-Saing
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.109-120
    • /
    • 1991
  • Total body irradiation is operated to irradicate malignant cells of bone marrow of patients to be treated with bone marrow transplantation. Field size of a linear accelerator or cobalt teletherapy unit with normal geometry for routine technique is too small to cover whole body of a patient. So, any special method to cover patient whole body must be developed. Because such environments as room conditions and machine design are not universal, some characteristic method of TBI for each hospital could be developed. At Seoul National University Hospital, at present, only a cobalt unit is available for TBI because source head of the unit could be tilted. When the head is tilted outward by 90$^{\circ}$, beam direction is horizontal and perpendicular to opposite wall. Then, the distance from cobalt source to the wall was 319 cm. Provided that the distance from the wall to midsagittal plane of a patient is 40cm, nominal field size at the plane(SCD 279cm) is 122cm$\times$122cm but field size by measurement of exposure profile was 130cm$\times$129cm and vertical profile was not symmetric. That field size is large enough to cover total body of a patient when he rests on a couch in a squatting posture. Assuming that average lateral width of patients is 30cm, percent depth dose for SSD 264cm and nominal field size 115.5cm$\times$115.5cm was measured with a plane-parallel chamber in a polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom of size 25cm wide and 30cm deep. Depth of dose maximum, surface dose and depth of 50% dose were 0.3cm, 82% and 16.9cm, respectively. A dose profile on beam axis for two opposing beams was uniform within 10% for mid-depth dose. Tissue phantom ratio with reference depth 15cm for maximum field size at SCD 279cm was measured in a small polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom with TLD chips inserted in holes on the largest coronal plane was bilaterally irradiated by 15 minute in each direction by cobalt beam aixs in line with the cross line of the coronal plane and contact surface of sections No. 27 and 28. When doses were normalized with dose at mid-depth on beam axis, doses in head/neck, abdomen and lower lung region were close to reference dose within $\pm$ 10% but doses in upper lung, shoulder and pelvis region were lower than 10% from reference dose. Particulaly, doses in shoulder region were lower than 30%. On this result, the conclusion such that under a geometric condition for TBI with cobalt beam as SNUH radiotherapy departement, compensators for head/neck and lung shielding are not required but boost irradiation to shoulder is required could be induced.

  • PDF

Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy (양성자 치료 시 방사선 작업 종사자에게 미치는 방사선 피폭에 대한 평가)

  • Lee, Seung-Hyun;Jang, Yo-Jong;Kim, Tae-Yoon;Jeong, Do-Hyung;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • Purpose: Unlike the existing linear accelerator with photon, proton therapy produces a number of second radiation due to the kinds of nuclide including neutron that is produced from the interaction with matter, and more attention must be paid on the exposure level of radiation workers for this reason. Therefore, thermoluminescence dosimeter (TLD) that is being widely used to measure radiation was utilized to analyze the exposure level of the radiation workers and propose a basic data about the radiation exposure level during the proton therapy. Materials and Methods: The subjects were radiation workers who worked at the proton therapy center of National Cancer Center and TLD Badge was used to compare the measured data of exposure level. In order to check the dispersion of exposure dose on body parts from the second radiation coming out surrounding the beam line of proton, TLD (width and length: 3 mm each) was attached to on the body spots (lateral canthi, neck, nipples, umbilicus, back, wrists) and retained them for 8 working hours, and the average data was obtained after measuring them for 80 hours. Moreover, in order to look into the dispersion of spatial exposure in the treatment room, TLD was attached on the snout, PPS (Patient Positioning System), Pendant, block closet, DIPS (Digital Image Positioning System), Console, doors and measured its exposure dose level during the working hours per day. Results: As a result of measuring exposure level of TLD Badge of radiation workers, quarterly average was 0.174 mSv, yearly average was 0.543 mSv, and after measuring the exposure level of body spots, it showed that the highest exposed body spot was neck and the lowest exposed body spot was back (the middle point of a line connecting both scapula superior angles). Investigation into the spatial exposure according to the workers' movement revealed that the exposure level was highest near the snout and as the distance becomes distant, it went lower. Conclusion: Even a small amount of exposure will eventually increase cumulative dose and exposure dose on a specific body part can bring health risks if one works in a same location for a long period. Therefore, radiation workers must thoroughly manage exposure dose and try their best to minimize it according to ALARA (As Low As Reasonably Achievable) as the International Commission on Radiological Protection (ICRP) recommends.

  • PDF

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy (동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로)

  • Cho, Hyun-Seung;Park, Sun-Hyeong;Kang, Da-Hye;Lee, Kang-Hwi;Kang, Seung-Jin;Han, Bo-Ram;Oh, Jung-Hoon;Lee, Hae-Dong;Lee, Joo-Hyeon;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.

Dose Distribution and Characterization for Radiation Fields of Multileaf Collimateor System (방사선 입체조형치료용 다엽콜리메이터의 특성과 조직내 선량분포 측정)

  • Chu, Sung-Sil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Purpose : Multileaf collimator(MLC) is very suitable tool for conformal radio-therapy and commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 10MV photons are required, For modeling the collimator with treament planning software, detailed dosimetric characterization of the multileaf collimator including the penumbra width, leaf transmission between leaf leakage and localization of the leaf ends and sides is an essential requirement. materials and Methods : Measurement of characteristic data of the MLC with 26 pair block leaves installed on CLINAC 2100C linear accelerator was performed. Low sensitive radiographic film(X-omatV) was used for the penumbra measurement and separate experiments using radiographic film and thermoluminescent dosimeters were performed to verify the dose distribution, Measured films were analized with a photodensitometer of WP700i scanner. Results : For 6 & 10 MV x-ray energies, approximately $2.0\%$ of photons incident on the multileaf collimator were transmitted and an additional $0.5\%$ leakage occurs between the leaves. Localizing the physical end of the leaves showed less than 1mm deviation from the $50\%$ decrement line and this difference is attributed to the curved shaped end on the leaves One side of a sin히e leaf corresponded to the $50\%$ decrement line, but the opposite face was aligned with a lower value. This difference is due to the tongue and groove used to decrease between leaf leakage. Alignment of the leaves to form a straight edge resulted larger penumbra at far position from isocenter as compare with divergent alloy blocks. When the MLC edge is stepped by sloping field, the isodose lines follow the leaf pattern and Produce scalloping isodose curves in tissue. The effective penumbra by 45 degree stepped MLC is about 10mm at 10cm depth for 6MV x-ray. The difference of effective penumbra in deep tissue between MLC and divergent alloy blocks is small (5mm). Conclusion : Using the characteristic data of MLC, the MLC has the clinlical acceptability and suitability for 3-D conformal radiotherapy except small field size.

  • PDF

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

Dose distribution at junctional area for head and neck radiotherapy (두경부 방사선치료시 접합 조사면의 선량분포)

  • 김정기;김기환;오영기;김진기;정동혁;신교철;양광모;조문준;박인규
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 2001
  • For the head and neck radiotherapy, the technique of half beam using independent collimator is very useful to avoid overlapping of fields particularly when the lateral neck fields are placed adjacent to anterior supraclavicular field. Also abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom and the dose distribution at beam center of 2 half beams further examined according to depths(0 cm, 1.5 cm, 3 cm, 5 cm) for single anterior half beam and anterior/posterior half beam. The dose distribution to the junction line between photon and electron fields was also measured. For the single anterior half beam, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 88%, 93% and 95% of open beam, respectively. In the anterior/posterior half beams, the absorption doses at 0.3 cm, 0.5 cm and 1 cm distances from beam center were 92%, 93% and 95% of open beam, respectively At the junction line between photon and electron fields, hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. With above results, we concluded that when using electron beam or independent jaw for head and neck radiotherapy, the hot and cold dose area should be considered as critical point.

  • PDF