DOI QR코드

DOI QR Code

광개시제 종류 및 함량에 따른 광경화형 잉크의 광경화 특성과 인쇄회로기판용 에칭 레지스트 소재로의 적용성 연구

Investigating the Effect of Photoinitiator Types and Contents on the Photocuring Behavior of Photocurable Inks and Their Applications for Etching Resist Inks

  • 김보영 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 조수빈 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 정과정 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 박성대 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 김지훈 (공주대학교 신소재공학부) ;
  • 최의근 (주식회사 프로텍) ;
  • 유명재 (한국전자기술연구원 융복합전자소재연구센터) ;
  • 양현승 (한국전자기술연구원 융복합전자소재연구센터)
  • Bo-Young Kim (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Subin Jo (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Gwajeong Jeong (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Seong Dae Park (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Jihoon Kim (Division of Advanced Materials Engineering, Kongju National University) ;
  • Eui-Keun Choi (R&D Center, PROTECH Co., LTD.) ;
  • Myong Jae Yoo (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Hyunseung Yang (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute)
  • 투고 : 2023.05.24
  • 심사 : 2023.07.09
  • 발행 : 2023.08.10

초록

전자 기기의 소형화, 집적화 및 박형화에 따라 인쇄회로기판 제조 시 미세한 회로 패턴이 요구되고 있다. 기존의 인쇄회로기판은 dry film resist를 이용한 photolithography 법을 적용하여 주로 제조하지만, 미세 회로 패턴 구현을 위해서는 정밀한 마스크 설계 및 고가의 노광장비 등이 필요하다는 한계점이 있다. 이에 따라서 최근에는 dry film resist를 대체하여 미세 회로 패턴 형성에 유리한 광경화형 잉크를 직접인쇄 공정을 통해 인쇄회로기판의 회로 패턴을 형성하는 연구들이 관심받고 있다. 광경화형 잉크를 통한 회로 패턴 형성을 위해서는 동박과의 밀착성, 패턴 형성 과정에서의 에칭 저항성, 박리 특성의 제어가 필수적이다. 본 연구에서는 광개시제 종류 및 함량이 다른 여러 광경화형 잉크를 제조하고 이들의 광경화 거동을 분석하였다. 또한, 광경화형 에칭 레지스트 잉크로의 적용성 평가를 위해 에칭 저항성, 박리성, 밀착성 등을 분석하였다.

As electronic devices become smaller and more integrated, the demand for manufacturing thin, flexible printed circuit boards (FPCBs) has increased. Although FPCBs are conventionally manufactured by a photolithography method using dry film resist, this process is complicated, and the mask is specifically designed to obtain the precision of the desired circuit line width. In this regard, manufacturing FPCBs with fine patterns through the direct printing method of photocurable inks has gained growing attention. Since the manufacturing process of FPCBs is based on the direct printing method that includes etching and stripping processes utilizing acid and basic chemicals, controlling the adhesion strength, the etching resistance, and the strippability of photocured inks has drawn a lot of attention for the fabrication of fine patterns through photocurable inks. In this study, acrylic ink with various types and contents of the photoinitiator was prepared, and the curing behavior was analyzed. Also, the adhesion strength, etching resistance, and strippability were analyzed to evaluate the applicability of developed photocurable etching resist inks.

키워드

과제정보

본 연구는 산업통상자원부 차세대 하이브리드 PCB 기술개발사업 (Grant No. 20006472)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Y. Ding, Y. Xin, Q. Zhang, and Y. Zou, Acrylic resins with oxetane pendant groups for free radical and cationic dual-curing photoresists, Mater. Des., 213, 110370
  2. M. Sato, S. Suzuki, S. Sugita, K. Kaneda, and S. Kobayashi, Ink-jet ink composition for etching resist, JP Patent PCT/JP2009/000309 (2009).
  3. W. K. Hsiao, S. D. Hoath, G. D. Martin, and I. M. Hutching, Ink jet printing for direct mask deposition in printed circuit board fabrication, J. Imaging. Sci. Technol., 53, 050304-050304-8 (2009). https://doi.org/10.2352/J.ImagingSci.Technol.2009.53.5.050304
  4. S. J. Park, R. W. Lee, and J. Joung, Fabrication of the printed circuit board by direct photosensitive etch resist patterning, J. Korean Soc. Precis. Eng., 24, 97-103 (2007).
  5. M. J. Yoo and S. D. Park, Etching-resistant ink composition, photocurable film prepared therefrom, and method of manufacturing printed circuit board using same, KR Patent 1020210168865 (2020).
  6. F. H. Mostegel, M. Roth, M. Gassner, A. Oeterriecher, R. Piock, M. Edler, and T. Griesser, Vinylcarbonates as low-toxic monomers for digital ink-jet inks : Promising alternatives to acrylate based systems, Prog. Org. Coat., 94, 116-123 (2016). https://doi.org/10.1016/j.porgcoat.2016.01.003
  7. S. Kim, S.-W. Lee, D. -H. Lim, J.-W. Park, C. -H. Park, and H.-J. Kim, Fabrication of optically clear acrylic pressure-sensitive adhesive by photo-polymerization : UV-curing behavior, adhesion performance, and optical properties, J. Adhes. Sci. Technol., 27, 2177-2190 (2015).
  8. J. W. Bae, J. H. Jung, H. S. Wang, S. H. Kim, I. J. Kim, I. J. Kim, and K. Song, Dual curing characteristics of photo-curable acrylate monomers, Polym. Korea, 41, 361-366 (2017). https://doi.org/10.7317/pk.2017.41.2.361
  9. A. Ribas-Massonis, M. Cicujano, J. Duran, E. Besalu, and A. Poater, Free-radical photopolymerization for curing products for refinish coatings market, Polymers, 14, 2856
  10. J. Z. Shao, Y. Huang, and Q. U. Fan, Visible light initiating systems for photopolymerization : status, development and challenge, Polym. Chem., 5, 4195-4210 (2014). https://doi.org/10.1039/C4PY00072B
  11. S. J. Park, R.-W. Lee, and J. Joung, Fabrication of the printed circuit board by direct photosensitive etch resist patterning, J. Korean Soc. Precis. Eng., 24, 97-103 (2007).
  12. J. Wang, J. Li, X. Wang, Q. Cheng, Y. Weng, and J. Ren, Synthesis and properties of UV-curable polyester acrylate resins from biodegradable poly (L-lactide) and poly(ε-caprolactone), React. Funct. Polym., 155, 104695-104704 (2020) https://doi.org/10.1016/j.reactfunctpolym.2020.104695
  13. F. Wang, J. Q. Hy, and W. P. Tu, Study on microstructure of UV-curable polyurethane acrylate films, Prog. Org. Coat., 62, 245-250 (2008). https://doi.org/10.1016/j.porgcoat.2007.12.005
  14. S. Protti, D. Dondi, M. Fagnoni, and A. Albini, Photochemistry in synthesis : Where, when, and why, Pure Appl. Chem., 79, 1929-1938 (2007). https://doi.org/10.1351/pac200779111929
  15. J. Kajtna, B. Likozar, J. Golob, and M. Krajnc, The influence of the polymerization on properties of an ethylacrylate/2-ethyl hexylacrylate pressure-sensitive adhesive suspension, Int. J. Adhes. Adhes., 28, 382-390 (2008). https://doi.org/10.1016/j.ijadhadh.2007.11.003
  16. D. Kunwong, N. Sumanochitraporn, and S. Kaewpirom, Curing behavior of a UV-curable coating based on urethane acrylate oligomer : the influence of reactive monomers, Songklanakarin J. Sci. Technol., 33, 201-207 (2011).
  17. L. Macarie and G. Ilia, The influence of temperature and photoinitiator concentration on photoinitiated polymerization of diacrylate monomer, Cent. Eur. J. Chem., 3, 721-730 (2005).
  18. S. W. Lee, T. H. Lee, J. W. Park, C. H. Park, and H. J .Kim, Properties and curing behaviors of UV curable adhesives with different coating thickness in temporary bonding and debonding precess, J. Korean Soc. Precis. Eng., 31, 873-879 (2014). https://doi.org/10.7736/KSPE.2014.31.10.873
  19. S. H. Kim, H. S. Chang, S. Park, and K. Song, Study on the curing properties of photo-curable acrylate resins, Polym. Korea., 34, 469-473 (2010). https://doi.org/10.7317/pk.2010.34.5.469
  20. S. Kwon, B. Kim, and H. Noh, Study of physical properties of UV protective film with acrylate polymers, Polym. Korea., 41, 295-300 (2017). https://doi.org/10.7317/pk.2017.41.2.295
  21. J. Oh, S. H. Kim, K. I. Jung, J. Huh, H. W. Jung, and J. Bang, Effect of photo-initiators on the crosslinking behavior of organic thin films and their applicabillity to flexible display encapsulation Layer, Polym. Korea., 44, 841-847 (2020). https://doi.org/10.7317/pk.2020.44.6.841
  22. K. Viswanthan, C. E. Holye, E. S. Jonsson, Charles Nason, and Karin Lindgren, Effect of amine structure on photoreduction of hydrogen abstraction initiators, Macromolecules, 35, 7963-7967 (2002). https://doi.org/10.1021/ma0120308
  23. C. Dietlin, T. T. Trinh, S. Schweizer, B. Graff, F. Morlet-Savary, P. -A. Noirot, and J. Lalevee, New phosphine oxides as high performance near-UV type I photoinitiators of radical polymerization, Molecules, 25, 1671 (2020).
  24. H. -G. Kim and K. -E. Min, Effect of photoinitiator system on mechanical properties and water sorption behavior of urethane acrylate/MMT nanocomposite by UV radiation curing, Polym. Korea., 39, 256-260 (2015). https://doi.org/10.7317/pk.2015.39.2.256
  25. J. Segurola, N. Allen, M. Edge, and I. Roberts, Photochemistry and photoinduced chemical crosslinking activity of acrylated prepolymers by several commercial type I far UV photoinitiators, Polym. Degrad. Stab., 65, 153-160 (1999). https://doi.org/10.1016/S0141-3910(99)00003-8
  26. A. Allushi, C. Kutahya, C. Aydogan, J. Kreutzer, G. Yilmaz, and Y. Yagci, Conventional type II photoinitiators as activators for photoinduced metal-free atom transfer radical polymerization, Polym. Chem., 8, 1972-1977 (2017). https://doi.org/10.1039/C7PY00114B
  27. J. G. Leprince, M. Hadis, A. C. Shortall, J. L. Ferracane, J. Devaux, G. Leloup, and W. M. Palin, Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins, Dent. Mater. J., 27, 157-164 (2009).
  28. Benkhelifa, K. E. Boudraa, and T. Bouchaour, Enhancement of shape memory properties of thermos-responsive compolymers-based 2-hydroxy propyl methacrylate and n-isobornyl acrylate, J. Therm. Anal., 147, 13313-13328 (2022).  https://doi.org/10.1007/s10973-022-11532-z