• Title/Summary/Keyword: line impedance

Search Result 935, Processing Time 0.022 seconds

A Study on the Cylindrical Microstrip Antenna for ISM Band Applications (ISM 대역용 원통형 마이크로스트립 안테나에 관한 연구)

  • Jeong, Don-Ki;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.326-332
    • /
    • 2006
  • In this study, the antenna was proposed for the omni-directional characteristic in horizontal plane. Therefore we proposed $1{\times}4$ microstrip patch array on cylindrical surface for studying microstrip patch antennas. This antenna is designed for 2.45GHz ISM band and applications. This antenna can be applied to the base station of wireless microphone and access point of wireless LAN. The length and width of the patch antenna and the width of the feed line were calculated by using the theory of microstrip patch antenna, by using the both the 2.5D and 3D EM simulators the optimized antenna characteristics are obtained. From result of measured, antenna's impedance of coaxial waveguide port was 51.915-j3.688 ${\Omega}$, the return loss was -31dB and VSWR was 1.081.

  • PDF

A Master and Slave Control Strategy for Parallel Operation of Three-Phase UPS Systems with Different Ratings (다른 정격용량을 가진 3상 UPS 시스템의 병렬운전을 위한 주종제어 기법)

  • 이우철;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.341-349
    • /
    • 2004
  • A parallel operation of Uninterruptible Power Supply(UPS) systems is used to increase power capacity of the system or to secure higher reliability at critical loads. In the conventional parallel operation, the load-sharing control to maintain the current balance is the most important, since the load-sharing is very sensitive to discord between components of each module, amplitude/phase difference, line impedance, output LC filter, and so on. To solve these problems various control algorithms are researching. However, these methods cannot apply to the different ratings of UPS. In the case, master and slave control algorithm for parallel operation is adequate. However, if the UPS ratings are different, the value of passive filters L, C is different, and it affects the sharing of current. This paper presents general problems of conventional parallel operation systems, and control strategy for parallel operation with different ratings. The validity of the proposed control strategy is investigated through simulation and experiment in the parallel operation system with two 3-phase UPS systems.

A Study on Development of Scaled-down HVDC Model (HVDC의 축소형 모델 개발에 관한 연구)

  • Ahn, Jong-Bo;Yun, Jae-Young;Kim, Kook-Hun;Lee, Jong-Moo;Kim, Jong-Moon;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.219-221
    • /
    • 1999
  • HVDC(High Voltage Direct Current) transmission system was constructed between Cheju island and mainland Haenam and has been operating commercially since 1998. But research activities in this area are not so much. That is caused by the facts that HVDC is large scale system and it is not so easy to implement and to test. Though such simulation tools as RTDS(Real Time Digital Simulator) and EMTDC can be useful, these have limitations for actual control and protective system design. Therefore scaled-down HVDC model was developed for the purpose of researches at operating technique, control and protection methods. The design of this model was based on real Cheju-Haenam HVDC system. And additionally faults simulator such as ground fault, short-circuit and change of impedance in transmission line is equipped for analysis of these faults. Control system of the model was implemented fully digitally. So it is very easy for the researchers to develope control and protection algorithm and to test the performance.

  • PDF

Design of PIFA type Spiral Antenna for Vehicle RKE Reader (차량 RKE 리더기용 PIFA형 스파이럴 안테나의 설계)

  • Oh, Dong-Jun;Yun, Ho-Jin;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • In this paper, the spiral antenna with the center frequencies of 315MHz, 433MHz, and 447MHz for RKE system of a vehicle is designed on PCB. The antenna is microstrip line-fed, and applied PIFA concept near the feeding part to easily tune center frequency and input impedance. The PIFA-type spiral antenna with the size of $30mm{\times}20mm$ is designed on printed PCB by considering the effect of circuits and components on PCB, ECU case and vehicle body. Also chip inductor inserted dual-band spiral antenna of 315MHz and 447MHz is designed. We found that the antenna designed on PCB satisfied the antenna specifications through measurement and field test.

  • PDF

Characteristics of the magnetic flux-offset type FCL by switching component

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.18-20
    • /
    • 2016
  • The study of superconducting fault current limiter (SFCL) is continuously being studied as a countermeasure for reducing fault-current in the power system. When the fault occurred in the power system, the fault-current was limited by the generated impedance of SFCLs. The operational characteristics of the flux-offset type SFCL according to turn ratios between the primary and the secondary winding of a reactor were compared in this study. We connected the secondary core to a superconductor and a SCR switch in series in the suggested structure. The fault current in the primary and the secondary winding of the reactor and the voltage of the superconductor on the secondary were measured and compared. The results showed that the fault current in the load line was the lowest and the voltage applied at both ends of the superconductor was also low when the secondary winding of the reactor had lower turn ratio than the primary. It was confirmed based on these results that the turn ratio of the secondary winding of the reactor must be designed to be lower than that of the primary winding to reduce the burden of the superconductor and to lower the fault current. Also, the suggested structure could increase the duration of the limited current by limiting the continuous current after the first half cycle from the fault with the fault current limiter.

Characteristics and Applications of the Tapered Feedline with Strong Coupling (강한 결합성을 갖는 테이퍼 라인을 이용한 공진기 급전선의 특성 및 응용)

  • 한상민;최준호;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.878-883
    • /
    • 2003
  • New feeding structures using linearly and exponentially tapered lines to planar microstrip resonators are proposed. These can overcome the design problems from coupling losses and impedance mismatching by increasing the coupling efficiency. The variation of its feeding angle is evaluated for the insertion loss and bandwidth and the feedline length is optimized at ${\lambda}_g$/2. The ring resonators and patches fed by the tapered line have been designed and implemented. The experimental results show that the insertion loss is enhanced by about 7 dB. Both rings and antennas are better matched, without disturbing the single-mode resonance or distorting their radiation pattern

A Study on Design of Band Pass Filter using Ring Resonators (링 공진기를 사용한 대역통과 필터의 설계에 관한 연구)

  • Kim, Dong-Il;Kim, Bo-Young;Rui, Li
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.533-539
    • /
    • 2004
  • In this work, in order to realize a band pass filter with wide-band characteristics for mobile communications, 2 GHz band pass filter was designed using ring resonator with stub. The three stage wide-band BPF was designed and fabricated. For broadband design, the ring circumference was divided by 4 sections with 1/8 wavelength and 2 sections with 1/4 wavelength which have different line impedances. The characteristics of the proposed BPF were highly improved by using three stage ring resonator. The characteristic impedance values of each sections were obtained by Powell's least square algorithm where differentiations are not needed. The measured results showed a good agreement with the theoretical results as well as ADS simulation.

A Study on the Characteristics of the Corrugated Feed-Horn Antenna Using FDTD Method (FDTD 방법을 이용한 Corrugated Feed-Horn Antenna 의 특성에 대한 연구)

  • 박혁균;성혁제;손병문;구연건
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.619-626
    • /
    • 2000
  • The electromagnetic fields of the corrugated annular feed-horn antenna have been analyzed exactly by using the finite-difference time-domain (FDTD) technique. The radiation pattern and return loss characteristics of the antenna were obtained as a function of the impedance of feeding coaxial line at 11.8GHz. The return loss was determined to be less than -25dB at 30$\Omega$. It was confirmed that the phase error is less compared to that of the antenna without corrugation, but the directivity of the radiation pattern needs to be improved.

  • PDF

A Study on the Development of the Digital Distance Relay Simulator for Education using GUI (GUI를 이용한 교육용 디지털 거리계전기 시뮬레이터 개발에 관한 연구)

  • Kim Dong-Su;Kim Chul-Hwan;Lee Ki-Teak;Park Nam-Ok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.388-395
    • /
    • 2005
  • It has always been of great importance in the electrical power system to educate an algorithm on the digital relaying, but it is difficult to educate an algorithm of a digital distance relay on power system because of exclusiveness of the relaying algorithm on power system. Therefore, we need a digital distance relay simulator, which can simulate the algorithm of the digital relaying on transmission line. In this Paper, we extract fundamental components using digital signal processing from data which are a variety of the simulated faults by EMTP. Then this simulator represents instantaneous values, ms values and symmetrical components that are calculated by fundamental components of voltages and currents. The Simulator also represents the zones of a digital distance relay and the locus of an impedance using GUI. Consequently, the developed simulator is particularly useful for understanding of the fundamental concepts of a distance relaying algorithm from a power system engineer points of view.

Operating Properties of Resistive Superconducting fault Current Limiters with Various Pattern Shapes

  • Park, Hyo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1286-1291
    • /
    • 2003
  • Quench behavior of resistive superconducting fault current limiters (SFCLS) with various pattern shapes was investigated. The pattern shapes employed were meander, bi-spiral, and spital shapes of identical line width, gap and margin. SFCLS were fabricated from YBCO thin films grown on two-inch diameter Al$_2$O$_3$ substrates under the same conditions. The total length of current limiting paths was the shortest at the spital shape due to its larger useless space. Inductance component of SFCLs with the spiral shape was around two times as high as those of other two shapes. This is not desirable since impedance characteristics of existing power systems can be changed. Resistance rise of current limiting elements was low at a spiral shape before the whole quench completion, which may act as a disadvantage for simultaneous quench in serial connection between current limiting elements, but the temperature tended to have similar values at higher voltages. On the other hand, hi-spital shape was severe at insulation level between current limiting lines. When these aspects were considered, we concluded that a meander shape was appropriate to design for a resistive SFCL based on thin films except the concentration of electric field at edge areas of strip lines.