• Title/Summary/Keyword: limiters

Search Result 182, Processing Time 0.03 seconds

Comparative Study of Current Limiting Characteristics for Hybrid Type and Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.222-225
    • /
    • 2007
  • In this paper, we compared the current limiting characteristics of both the hybrid type and the flux-lock type superconducting fault current limiters(SFCLs), which have a magnetic coupling structure between a primary winding and several secondary windings. The limiting impedances of two SFCLs were derived from each equivalent circuit considering the design parameters of SFCL such as the self-inductance of secondary winding and the resistance of $high-T_C$ superconducting(HTSC) element. Through the comparison for the limiting impedances of two SFCLs considering the dependence of the HTSC element's resistance on the applying voltage into the SFCL, the hybrid type SFCL was confirmed to have larger limiting impedance with smaller resistance of HTSC element than the flux-lock type SFCL. It was expected from the analysis that the hybrid type SFCL was more advantageous than the flux-lock type SFCL from the viewpoint of the fault current limiting level.

A Study on the Fuse Sizing Technique for the Protection of Satellite Power System (인공위성 전력 시스템 보호를 위한 퓨즈 선정 기법 연구)

  • Jeon, Hyeon-Jin;Lim, Seong-Bin;Lee, Sang-Rok
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Power system in satellite is protected by installing fuses, LCLs (Latching Current Limiters), etc. between satellite power supply and loads. In this paper, the fuse sizing technique for satellite power system protection is addressed. Detailed fuse sizing method is explained and it is shown that the single fuse connection method is mathematically subordinated to the parallel fuse connection method. In addition, appropriate fuse selection method is newly suggested under a situation where exact current characteristics of a load connected to a fuse is unknown.

Improvement of Digital Distance Relaying Algorithm Using Wavelet Transform in Combined Transmission Line (웨이브렛을 이용한 혼합송전선로에서의 거리계전 알고리즘 개선)

  • 정채균;김경호;하체웅;이종범;윤양웅
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.593-601
    • /
    • 2003
  • Distance realy is tripped by the line impedance calculated at the relay point. Accordingly the accurate operation depends on the precise calculation of line impedance. Impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding resistance, and sheath voltage limiters(SVLs). There are also several grounding systems in cable systems. Therefore, if there is a fault in cable systems, these terms will severely be caused much error to calculation of impedance. Accordingly the proper compensation should be developed for the correct operation of the distance relay. This paper presents the distance calculating algorithm in combined transmission line with power cable using wavelet transform. In order to achieve such purpose, judgement method to discriminate the fault section in both sections was proposed using D1 coefficient summation in db4. And also, error compensation value was proposed for correct calculation of impedance in power cables section.

Fault Location using Neuro-Fuzzy in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전계통에서의 고장점 추정)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.319-322
    • /
    • 2002
  • Distance relay is operated in calculating line impedance. It can be worked accurately in overhead line. However, power cables or combined transmission lines need compensation for calculated impedance because cable systems have sheaths, grounding wires and sheath voltage limiters(SVLs) Neuro-fuzzy can be viewed either as a fuzay system, a neural network or fuzzy neural network and it can estimate the location of the fault accurately. In this paper, fault section and fault location can be classified and estimated in neuro- fuzzy inference system and neural network.

  • PDF

Electromagnetic Behavior of High -$T_c$ Superconductors underthequenchstate -

  • 정동철;최효상;황종선;윤기웅;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.183-187
    • /
    • 2002
  • In this paper we analyzed the electromagnetic behavior of high $-T_{c}$ superconductor under the quench state using finite element method. Poisson equation was used in finite element analysis as a governing equation and was solved using algebra equation using Gallerkin method. We first investigate d the electromagnetic behavior of U-type superconductor. Finally we applied our analysis techniques to 5.5 kVA meander-line superconducting fault current limiters (SFCL) which are currently developed by many power-system researcher in the world. Meshes of 14,600 elements were used in analysis of this SFCL. Analysis results show that the distribution of current density was concentrated to inner curvature in meander-line type-superconductors and maximum current density 14.61 $A/\m^2$ and also maximum Joule heat was 6,420 W/㎥. We concluded that this meander line-type SFCL was not pertinet fur uniform electromagnetic field distribution.n.

  • PDF

Effect of Bi2212 Tubes Depending on Mold-design and Cooling Conditions (몰드 디자인과 냉각조건이 Bi2212 초전도튜브에 미치는 영향)

  • Lee, N.I.;Jang, G.E.;Oh, I.S.;Park, K.B.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.104-107
    • /
    • 2006
  • For the practical application on SCFCL(Superconducting fault current limiters), Bi-2212 tubes were fabricated by Centrifugal Forming Process(CFP). The tubes were annealed at 830, 840, $850^{\circ}C$, respectively for 80 hours in oxygen atmosphere. The tubes heat treated at $840^{\circ}C$ demonstrated better electric characteristics than the tubes heat treated at 830 and $850^{\circ}C$. The typical value measured at 77 K in the self field was around 556 A. In terms of cooling effect on superconducting properties, it was found the electrical properties were quite dependent on the mold design and shapes. In order to check uniformity along the tube, EFDLab fur heat and fluid analysis of NIKA was adopted. It was found out that the simulation data was quite well matched with experimental results.

  • PDF

Operating properties of superconducting fault current limiters with a sing1e line-to-ground fault in a three-phase system (3상 전력계통의 1선 지락사고에 대한 초전도한류기의 동작특성)

  • 최효상;현옥배;김혜림;황시돌;차상도
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.261-262
    • /
    • 2003
  • We performed unsymmetrical analysis of a single line-to-ground fault in a three-phase system. The current limiting elements were meander type YBCO stripes coated with Au shunt. When the fault occurred, short circuit currents were effectively limited within 1-2 msec after fault instant. The unsymmetrical rate of fault phase was distributed from 6.4 to 1.4 and most of the fault current flowed in the grounding line due to its direct grounding system.

  • PDF

Quench characteristics of thin film type SFCLs with shunt layers of various thickness (션트박막 두께에 따른 박막형 초전도 한류소자의 ?치특성)

  • 김혜림;이승엽;차상도;최효상;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.51-54
    • /
    • 2003
  • We investigated the quench characteristics of thin film type SFCLs with shunt layers of various thickness. The SFCLs ware based on 2 inch diameter YBa$_2$Cu$_3$O$_{7}$ thin films coated in-situ with a gold shunt layer. The shunt layer thickness was varied by Ar ion milling. The limiters were tested with simulated fault currents at various source voltages. The thinner the shunt layer was, the slower was the rise of SFCL temperatures. This means SFCLs of thinner shunt layers had higher voltage ratings. The voltage rating was approximately inversely proportional to the square root of the shunt layer thickness. This result could be understood through the concept of heat balance.e.

  • PDF

Quench characteristics of thin film type SFCLs with shunt layers of various thickness (션트박막 두께에 따른 박막형 초전도 한류소자의 ?치특성)

  • 김혜림;이승엽;차상도;최효상;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.242-245
    • /
    • 2003
  • We investigated the quench characteristics of thin film type SFCLs with shunt layers of various thickness. The SFCLs ware based on 2 inch diameter YBa$_2$Cu$_3$3O$_{7}$ thin films coated in-situ with a gold shunt layer. The shunt layer thickness was varied by Ar ion milling. The limiters were tested with simulated fault currents at various source voltages. The thinner the shunt layer was, the slower was the rise of SFCL temperatures. This means SFCLs of thinner shunt layers had higher voltage ratings. The voltage rating was approximately inversely proportional to the square root of the shunt layer thickness. This result could be understood through the concept of heat balance.e.

  • PDF

Concept Design of Superconducting Power System with Distributed Switching Station in Downtown Area (대도심 분산형 배전개폐소를 적용한 초전도 전력시스템 개념설계)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young;Lee, Byong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.522-528
    • /
    • 2006
  • Korean power system has some problems like as curtailing investment and the NIMBY (Not In My Back Yard) phenomena, because of power demand concentration in downtown area. In this time, superconducting power devices rise as a very attractive solution. This study proposes a basic concept of superconductivity power system with distributed switching station, and identifies the items for technical and economic analysis. The proposed system consists of superconducting cables/ transformers/FCLs(fault current limiters). The basic concept is to replace 154kV conventional cables with 22.9kV superconducting cables and to convert a 154kV substation into 22.9kV distributed switching stations in downtown area.