• Title/Summary/Keyword: limited weather variables

Search Result 19, Processing Time 0.054 seconds

adaptive neuro-fuzzy inference system;daily solar radiation;Illinois;limited weather variables;

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.483-486
    • /
    • 2015
  • The objective of this study is to develop generalized regression neural networks (GRNN) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using GRNN model. From the performance evaluation and scatter diagrams of GRNN model, GRNN 3 (three input) model produces the best results for both stations. Results obtained indicate that GRNN model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of GRNN model and its ability to produce accurate estimates in Illinois.

  • PDF

Air Pollution and Weather Data by Si-Gun-Gu in South Korea (시군구별 대기오염 및 기상 데이터)

  • Yun, Seong Do;Kim, Seung Gyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.171-175
    • /
    • 2020
  • Studies in socioeconomic impacts of air pollution are inevitable to merge data of the air pollutant density, weather, and socioeconomic variables. Due to their spatiotemporal disparities in units, to combine these data are time and effort consuming generically. The data described in this article aims to provide the major variables of air pollution and weather at the Si-Gun-Gu level to meet the data needs from social science. The latest (August 2020) data distributed are the balanced panel of 250 Si-Gun-Gu in South Korea for 2001-2018. The weather variables in this data are directly applicable to other social science topics, which are not limited to air pollution research.

Computation of daily solar radiation using adaptive neuro-fuzzy inference system in Illinois

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.479-482
    • /
    • 2015
  • The objective of this study is to develop adaptive neuro-fuzzy inference system (ANFIS) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using ANFIS model. From the performance evaluation and scatter diagrams of ANFIS model, ANFIS 3 (three input) model produces the best results for both stations. Results obtained indicate that ANFIS model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of ANFIS model and its ability to produce accurate estimates in Illinois.

  • PDF

Estimation of spatial distribution of precipitation by using of dual polarization weather radar data

  • Oliaye, Alireza;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.132-132
    • /
    • 2021
  • Access to accurate spatial precipitation in many hydrological studies is necessary. Existence of many mountains with diverse topography in South Korea causes different spatial distribution of precipitation. Rain gauge stations show accurate precipitation information in points, but due to the limited use of rain gauge stations and the difficulty of accessing them, there is not enough accurate information in the whole area. Weather radars can provide an integrated precipitation information spatially. Despite this, weather radar data have some errors that can not provide accurate data, especially in heavy rainfall. In this study, some location-based variable like aspect, elevation, plan curvature, profile curvature, slope and distance from the sea which has most effect on rainfall was considered. Then Automatic Weather Station data was used for spatial training of variables in each event. According to this, K-fold cross-validation method was combined with Adaptive Neuro-Fuzzy Inference System. Based on this, 80% of Automatic Weather Station data was used for training and validation of model and 20% was used for testing and evaluation of model. Finally, spatial distribution of precipitation for 1×1 km resolution in Gwangdeoksan radar station was estimates. The results showed a significant decrease in RMSE and an increase in correlation with the observed amount of precipitation.

  • PDF

The Comparison of Peach Price and Trading Volume Prediction Model Using Machine Learning Technique (기계학습을 이용한 복숭아 경락가격 및 거래량 예측모형 비교)

  • Kim, Mihye;Hong, Sungmin;Yoon, Sanghoo
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2933-2940
    • /
    • 2018
  • It is known that fruit is more affected by the weather than other crops. Therefore, in order to create high value for farmers, it is necessary to develop a wholesale price model considering the weather. Peaches produced under relatively limited conditions were chosen as subjects of study. The data were collected from 2015 to 2017 provided by okdab 4.0. The meteorological data used for the analysis were generated by weighting the cultivation area and the variables with high correlation among the weather data were selected from the day before to 7 days before. Randomforest, gradient boosting machine, and XGboost were used for the analysis. As a result of analysis, XGboost showed the best performance in the sense of RMSE and correlation, and price prediction was comparatively well predicted, but the accuracy of the trading volume prediction was not so good enough. The top three weather variables affecting to the peach were minimum temperature, average maximum temperature, and precipitation.

Comparison of reference evapotranspiration estimation methods with limited data in South Korea

  • Jeon, Min-Gi;Nam, Won-Ho;Hong, Eun-Mi;Hwang, Seonah;Ok, Junghun;Cho, Heerae;Han, Kyung-Hwa;Jung, Kang-Ho;Zhang, Yong-Seon;Hong, Suk-Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.137-149
    • /
    • 2019
  • Accurate estimation of reference evapotranspiration (RET) is important to quantify crop evapotranspiration for sustainable water resource management in hydrological, agricultural, and environmental fields. It is estimated by different methods from direct measurements with lysimeters, or by many empirical equations suggested by numerous modeling using local climatic variables. The potential to use some such equations depends on the availability of the necessary meteorological parameters for calculating the RET in specific climatic conditions. The objective of this study was to determine the proper RET equations using limited climatic data and to analyze the temporal and spatial trends of the RET in South Korea. We evaluated the FAO-56 Penman-Monteith equation (FAO-56 PM) by comparing several simple RET equations and observed small fan evaporation. In this study, the modified Penman equation, Hargreaves equation, and FAO Penman-Monteith equation with missing solar radiation (PM-Rs) data were tested to estimate the RET. Nine weather stations were considered with limited climatic data across South Korea from 1973 - 2017, and the RET equations were calculated for each weather station as well as the analysis of the mean error (ME), mean absolute error (MAE), and root mean square error (RMSE). The FAO-56 PM recommended by the Food Agriculture Organization (FAO) showed good performance even though missing solar radiation, relative humidity, and wind speed data and could still be adapted to the limited data conditions. As a result, the RET was increased, and the evapotranspiration rate was increased more in coastal areas than inland.

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration (기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증)

  • Kim, SeHyun;Kim, Hyun Mee;Kay, Jun Kyung;Lee, Seung-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

Implementation of Spatial Downscaling Method Based on Gradient and Inverse Distance Squared (GIDS) for High-Resolution Numerical Weather Prediction Data (고해상도 수치예측자료 생산을 위한 경도-역거리 제곱법(GIDS) 기반의 공간 규모 상세화 기법 활용)

  • Yang, Ah-Ryeon;Oh, Su-Bin;Kim, Joowan;Lee, Seung-Woo;Kim, Chun-Ji;Park, Soohyun
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • In this study, we examined a spatial downscaling method based on Gradient and Inverse Distance Squared (GIDS) weighting to produce high-resolution grid data from a numerical weather prediction model over Korean Peninsula with complex terrain. The GIDS is a simple and effective geostatistical downscaling method using horizontal distance gradients and an elevation. The predicted meteorological variables (e.g., temperature and 3-hr accumulated rainfall amount) from the Limited-area ENsemble prediction System (LENS; horizontal grid spacing of 3 km) are used for the GIDS to produce a higher horizontal resolution (1.5 km) data set. The obtained results were compared to those from the bilinear interpolation. The GIDS effectively produced high-resolution gridded data for temperature with the continuous spatial distribution and high dependence on topography. The results showed a better agreement with the observation by increasing a searching radius from 10 to 30 km. However, the GIDS showed relatively lower performance for the precipitation variable. Although the GIDS has a significant efficiency in producing a higher resolution gridded temperature data, it requires further study to be applied for rainfall events.

Optimal Location Analysis in terms of Efficiency for Solar Energy Facilities (효율성 측면에서 태양광 에너지 시설 최적입지에 관한 연구)

  • Yang, Il-Seung;An, Hyung-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.656-664
    • /
    • 2018
  • The following study was conducted to determine the optimal location in terms of efficiency for solar energy facilities, and to propose a policy implications for the orientation of the installments. 92 cases in Jeollanam-do Province were selected. A regression analysis was performed between the average electricity generation time as the dependent variable, and the facility, weather and site conditions as the independent variables. As a result, 5 variables were deemed significant. Larger site areas, closer proximity to rivers, islands, oceans, etc., least south-oriented, higher average wind speed, and facilities in agricultural land use and natural environment conservation land use had the highest efficiency. This study minimized the possibility of secure databases and errors following facility types, and was limited in the number of sites studied, since this was only conducted in Jeollanam-do Province. Nevertheless, these conclusions still offer important policy implications for determining the most optimal location for solar energy facilities.

Estimation of Climatological Standard Deviation Distribution (기후학적 평년 표준편차 분포도의 상세화)

  • Kim, Jin-Hee;Kim, Soo-ock;Kim, Dae-jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • The distribution of inter-annual variation in temperature would help evaluate the likelihood of a climatic risk and assess suitable zones of crops under climate change. In this study, we evaluated two methods to estimate the standard deviation of temperature in the areas where weather information is limited. We calculated the monthly standard deviation of temperature by collecting temperature at 0600 and 1500 local standard time from 10 automated weather stations (AWS). These weather stations were installed in the range of 8 to 1,073m above sea level within a mountainous catchment for 2011-2015. The observed values were compared with estimates, which were calculated using a geospatial correction scheme to derive the site-specific temperature. Those estimates explained 88 and 86% of the temperature variations at 0600 and 1500 LST, respectively. However, it often underestimated the temperatures. In the spring and fall, it tended to had different variance (e.g., increasing or decreasing pattern) from lower to higher elevation with the observed values. A regression analysis was also conducted to quantify the relationship between the standard deviation in temperature and the topography. The regression equation explained a relatively large variation of the monthly standard deviation when lapse-rate corrected temperature, basic topographical variables (e.g., slope, and aspect) and topographical variables related to temperature (e.g., thermal belt, cold air drainage, and brightness index) were used. The coefficient of determination for the regression analysis ranged between 0.46 and 0.98. It was expected that the regression model could account for 70% of the spatial variation of the standard deviation when the monthly standard deviation was predicted by using the minimum-maximum effective range of topographical variables for the area.