• Title/Summary/Keyword: limit of quantification

Search Result 464, Processing Time 0.028 seconds

Optimization of Analytical Methods for Ochratoxin A and Zearalenone by UHPLC in Rice Straw Silage and Winter Forage Crops (UHPLC를 이용한 볏짚 사일리지와 동계사료작물의 오크라톡신과 제랄레논 분석법 최적화)

  • Ham, Hyeonheui;Mun, Hye Yeon;Lee, Kyung Ah;Lee, Soohyung;Hong, Sung Kee;Lee, Theresa;Ryu, Jae-Gee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.333-339
    • /
    • 2016
  • The objective of this study was to optimize analytical methods for ochratoxin A (OTA) and zearalenone (ZEA) in rice straw silage and winter forage crops using ultra-high performance liquid chromatography (UHPLC). Samples free of mycotoxins were spiked with $50{\mu}g/kg$, $250{\mu}g/kg$, or $500{\mu}g/kg$ of OTA and $300{\mu}g/kg$, $1500{\mu}g/kg$, or $3000{\mu}g/kg$ of ZEA. OTA and ZEA were extracted by acetonitrile and cleaned-up using an immunoaffinity column. They were then subjected to analysis with UHPLC equipped with a fluorescence detector. The correlation coefficients of calibration curves showed high linearity ($R^2{\geq_-}0.9999$ for OTA and $R^2{\geq_-}0.9995$ for ZEA). The limit of detection and quantification were $0.1{\mu}g/kg$ and $0.3{\mu}g/kg$, respectively, for OTA and $5{\mu}g/kg$ and $16.7{\mu}g/kg$, respectively, for ZEA. The recovery and relative standard deviation (RSD) of OTA were as follows: rice straw = 84.23~95.33%, 2.59~4.77%; Italian ryegrass = 79.02~95%, 0.86~5.83%; barley = 74.93~97%, 0.85~9.19%; rye = 77.99~96.67%, 0.33~6.26%. The recovery and RSD of ZEA were: rice straw = 109.6~114.22%, 0.67~7.15%; Italian ryegrass = 98.01~109.44%, 1.65~4.81%; barley = 98~113.53%, 0.25~5.85%; rye = 90.44~108.56%, 2.5~4.66%. They both satisfied the standards of European Commission criteria (EC 401-2006) for quantitative analysis. These results showed that the optimized methods could be used for mycotoxin analysis of forages.

Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard (포도 과수원에서 살균제 Difenoconazole의 농작업자 노출량 측정)

  • Cho, ll Kyu;Park, Joon Seong;Park, So Hyun;Kim, Su Jin;Kim, Back Jong;Na, Tae Wong;Nam, Hyo Song;Park, Kyung Hun;Lee, Jiho;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.286-293
    • /
    • 2016
  • BACKGROUND: 18% of difenoconazole+iminoctadin triacetate microemulsion (3%+15%) formulation were mixed and sprayed as closely as possible to normal practice on the ten of farms located in the Youngju of South Korea. Patches, cotton gloves, socks, masks and XAD-2 resin were used to measure the potential exposure for applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to difenoconazole during preparation of spray suspension and application with a power sprayer on a grape orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump IOM sampler and cassette and glass fiber filter were used for inhalation exposure. The field studies were carried out in a grape orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 97.3% and 119.6% in the level of 100 LOQ (limit of quantification) while the LOQ for difenoconazole was $0.025{\mu}g/mL$ using HPLC-UVD. The arms exposure to difenoconazole for the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, legs). The exposure to difenoconazole in the legs for applicator (3.78 mg) was highest in the parts of body. The dermal exposure for mixer/loader and applicator were 0.02 and 2.28 mg on a grape orchard, respectively. The inhalation exposure during application was estimated as 0.02 mg. The ratio of inhalation exposure to dermal exposure was equivalent to 0.9% of the dermal exposure. CONCLUSION: The inhalation exposure for applicator indicated $18.8{\times}10^{-3}mg$, which was level of 0.9% of the dermal exposure (2.28 mg). Operator exposure (0.004 mg/kg bw/day) to difenoconazole during treatment for grape is calculated as 2.5% of the established AOEL (0.16 mg/kg bw/day).

A Comparative Analysis of Standard Uptake Value Using the Recovery Coefficient Before and After Correcting Partial Volume Effect (부분 체적 효과에서 회복 계수를 이용한 보정 전과 후 SUV의 비교 분석)

  • Ko, Hyun-Soo;Park, Soon-Ki;Choi, Jae-Min;Kim, Jung-Sun;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Purpose: The partial volume effect occurs because of limit of the spatial resolution. It makes partial loss of intensity and causes SUV to be lower than it should actually be. So the purpose of this study is to calculate recovery coefficient for correcting PVE from phantom study and to compare before and after SUV correction applying to PET/CT examination. Materials and Methods: The flangeless Esser PET phantom consisting of four hot cylinders was used for this study. All of the hot cylinders were filled with FDG solution of 20.72 MBq per 1000 ml, and the phantom background was filled with FDG solution of different concentrations (33.30, 22.20, 16.65 MBq per 6440 ml) to yield H/B ratios of around 4:1, 6:1 and 8:1. Using the Biograph Truepoint 40(SIEMENS, Germany), we applied recovery coefficient method to 30 patients who were diagnosed with lung cancer after PET/CT exam. And then we analyzed and compared SUV before and after correcting partial volume effect. Results: The smaller the diameter of hot cylinder becomes, the more recovery coefficient decreased. When we applied recovery coefficient to clinical patients and compared SUV before and after correcting PVE, before the correction all lesions gave an average max SUV of 7.83. And after the correction, the average max SUV increases to 10.31. The differences in the max SUV between before and after correction were analyzed by paired t test. As a result, there were statistically significant differences (t=7.21, p=0.000). Conclusion: The SUV for quantification should be measured precisely to give consistent information of tumor uptake. But PVE is one of factors that causes SUV to be lower and to be underestimated. We can correct this PVE and calculate corrected SUV using the recovery coefficient from phantom study. And if we apply this correction method to clinical patients, we can finally assess and provide quantitative analysis more accurately.

  • PDF

Risk Assessment of Operator Exposure During Treatment of Fungicide Dithianon on Apple Orchard (사과 과수원에서 농약살포시 살균제 Dithianon의 농작업자 위해성 평가)

  • Cho, ll Kyu;Kim, Su Jin;Kim, Ji Myung;Oh, Young Goun;Seol, Jae Ung;Lee, Ji Ho;Kim, Jeong Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.302-311
    • /
    • 2018
  • BACKGROUND: Dithianon (75%) formulation were mixed and sprayed as closely as possible by normal practice on the ten farms located in the Mungeong of South Korea. Patches, cotton gloves, socks, masks, and XAD-2 resin were used for measurement of the potential exposure of dithianon on the applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to dithianon during preparation of spray suspension and application with a power sprayer on a apple orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump, IOM sampler and cassette, and glass fiber filter was used for inhalation exposure. The field studies were carried out in a apple orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 85.1% and 99.1% in the level of 100 LOQ (limit of quantification), while the LOQ for dithianon was $0.05{\mu}g/mL$ using HPLC-DAD. The exposure to dithianon on arms of the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, or legs). The exposure to dithianon on the applicator's legs (3.78 mg) was highest in the body parts. The dermal exposures for mixer/loader and applicator were 10 and 8.10 mg, respectively, from a grape orchard. The inhalation exposure during application was estimated as 0.151 mg, and the ratio of inhalation exposure was 11.2% of the dermal exposure (inner clothes). CONCLUSION: The dermal and inhalation exposure on the applicator appeared to be 4.203 mg - 25.064 mg and $0.529{\mu}g-116.241{\mu}g$, respectively. The total exposures on the agricultural applicators were at the level of 2.596 mg - 25.069 mg to dithianon during treatment for apple orchard. The TER showed 3.421 (>1) when AOEL of dithianon was used as a reference dose for the purpose of risk assessment of the mixing/loading and application.

Simultaneous Determination of 8 Preservatives (6 Parabens, 2-Phenoxyethanol, and Chlorphenesin) in Cosmetics by $UPLC^{TM}$ ($UPLC^{TM}$를 이용한 화장품 중 보존제 8종(파라벤 6종, 페녹시에탄올, 클로페네신)의 동시분석)

  • Park, Jeong-Eun;Lee, So-Mi;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-267
    • /
    • 2007
  • Parabens are used in nearly all types of cosmetics and toiletries because they are formulated well and have broad spectrum of activity, interness, low costs and excellent chemical stability in relation to pH. 2-phenoxyethanol and chlorphenesin are common preservatives which are usually used in combination with parabens in cosmetics. Toxicity of parabens is generally low but application of parabens to damaged or broken skin has resulted in sensitization. Moreover, the possibility of their estrogenic potential, anesthetic effects and reproductive toxicity has been reported. Consequently there are some regulations in use of parabens. And the maximum permitted concentrations of chlorphenesin and 2-phenoxyethanol in cosmetic products are authorized by the same reasons. So it is important to control and estimate the amount of parabens in products. In this article, we proposed a valid method for the simultaneous determination of 8 preservatives including parabens in a short time using ultra performance liquid $chromatography^{TM}\;(UPLC^{TM})$. Separation of eight components was achieved in less than 10 min and resolutions were reasonable (USP resolution ${\geqq}\;2$). And limit of detection and quantification were evaluated. The method was suitably validated for specificity, linearity, precision (repeatability, intermediate precision) and accuracy for assay (recovery) based on International conference on harmonisation (ICH) guideline. The method was applicable to analysis of preservatives in cosmetic products.

Determination of Soluble Carbohydrates in Soybean Seeds Using High Performance Liquid Chromatography with Evaporative Light Scattering Detection (증기화광산란 검출기를 이용한 콩 함유 수용성 탄수화물의 분석)

  • Kim, Gyeong-Ha;Hwang, Young-Sun;Ahn, Kyung-Geun;Kim, Gi-Ppeum;Kim, Min-Ji;Hong, Seung-Beom;Moon, Jung-Kyeong;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1062-1067
    • /
    • 2014
  • In the present study, a new analytical method was devised for the simultaneous determination of soluble carbohydrates in soybean seeds using high performance liquid chromatography/evaporative light scattering detection (HPLC/ELSD). The limit of quantification (LOQ) for soybean soluble carbohydrates ranged from 5.6~7.6 mg/kg using the HPLC/ELSD method and from 16.2~33.9 mg/kg using the high performance liquid chromatography/refractive index detection (HPLC/RID) method. Therefore, the HPLC/ELSD method was more sensitive than HPLC/RID. The precision values for retention time and peak area of the HPLC/ELSD method were evaluated by inter-day (n=5) and intra-day (n=10) assays using a standard solution. All precision values (CV<2.5%) for soybean soluble carbohydrates were acceptable and fulfilled international acceptance criteria. All linear calibration curves were obtained with a correlation coefficient of $R^2$ >0.999. The contents of soluble carbohydrates for the "Shingikong" (yellow soybean) and "Cheongjakong 3" (black soybean) samples were analyzed using the HPLC/RID and HPLC/ELSD methods. The difference in carbohydrate contents between the two detection methods was significant. Carbohydrate contents in the HPLC/ELSD method were higher than those in the HPLC/RID method. Overall, the HPLC/ELSD method showed satisfactory resolution with a favorable LOQ and reproducibility. Therefore, these results indicate that the HPLC/ELSD method may be applied to determine the contents of soluble carbohydrates in soybean seeds and related food stuffs.

Quantitative determination of inosine 5'-monophosphate dehydrogenase activity in human peripheral blood mononuclear cells by ion-pair reversed-phase high-performance liquid chromatography (이온쌍 역상 HPLC를 이용한 인체 말초혈액단핵구에서 이노신 5'-일인산 탈수소효소 활성의 정량적 측정)

  • Shin, Hye-Jin;Kwon, Soon-Ho;Park, Ji-Myeong;Kwon, Soon-Hyo;Lee, Kyoung-Ryul;Kim, Young-Jin;Lee, Sang-Hoo
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.531-536
    • /
    • 2010
  • A quantitative analytical method has been established for the measurement of inosine 5'-monophosphate dehydrogenase (IMPDH) activity in human peripheral blood mononuclear cells (PBMCs) by ion-pair reversed-phase high performance liquid chromatography equipped with ultraviolet detection (HPLC/UV). IMPDH is a ${\beta}$-nicotinamide adenine dinucleotide hydrate (NAD+)-dependent dehydrogenase in which the enzyme converts inosine 5'-monophosphate (IMP) into xanthosine 5'-monophosphate (XMP). Its activity was measured by quantifying a HPLC chromatogram corresponding to XMP produced during the incubation of lysed PBMCs with IMP as a substrate and $NAD^+$ as a coenzyme. XMP produced was detected at a wavelength of 260 nm. The mobile phase was composed of a mixture of 37 mM potassium dihydrogen phosphate containing 7 mM tetra-n-butylammonium hydrogen sulfate adjusted to pH 5.5 and methanol (85:15, v/v) with a flow rate of 1 mL/min. The calibration curve was linear ($r^2$=0.999999) in the range of $0.2-50.0\;{\mu}M$ and the limit of quantification (LOQ) was $0.2\;{\mu}M$. The intra- and inter-day precisions were between 0.88-1.47% and 0.85-5.24%, respectively. The intra- and inter-day accuracies were between 98.74-99.99% and 99.95-101.65%, respectively. IMPDH activity in 11 Korean healthy volunteers ranged from 18.29 to 36.60 nmol/h/mg protein (mean = $27.70{\pm}6.28\;nmol/h/mg$ protein).

Establishment of an Analytical Method for Novobiocin in Livestock Products Using HPLC-UVD (HPLC-UVD를 이용한 축산식품 중 Novobiocin의 시험법 확립)

  • Park, Hee-Ra;Kwon, Chan-Hyeok;Lee, Jong-Goo;Kim, Hyung-Soo;Chae, Young-Sik;Oh, Jae-Ho;Kwon, Ki-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.263-268
    • /
    • 2012
  • Novobiocin is a coumarin-containing antibiotic, and has a longer half-life in various animals than other veterinary medicines. A simple and rapid high-performance liquid chromatography assay for the determination of residual novobiocin levels in chicken, beef and milk has been developed and validated. The separation condition for HPLC/UVD was optimized by a MG II $C_{18}$ (4.6 mm $ID{\times}250$ mm, 5 ${\mu}m$) column with 0.1% formic acid in $H_2O$/0.1% formic acid in Acetonitrile (40/60, v/v) as the mobile phase at a flow rate of 1.0 mL/min and the detection wavelength was set at 340 nm. Residues were extracted from tissue by blending with methanol. After liquid-liquid partitioning, lipid materials were removed with n-hexane and purification as Silica (1 g, 6 mL) cartridge with 10 mL acetone/dichloromethane (10/90, v/v). Limit of quantification and linearity performed by the analytical method were 0.02 mg/kg and 0.999 ($r^2$), and the recovery range was $88.8{\pm}5.6-100.3{\pm}4.4$, $88.8{\pm}7.2-97.0{\pm}3.2$ and $88.1{\pm}4.3-92.8{\pm}3.6%$. It is expected that this analytical method with regards to novobiocin in chicken, beef and milk could be applied as an official method to administer food safety on veterinary medicines.

A study of analytical method for Benzo[a]pyrene in edible oils (식용유지 중 벤조피렌 분석법 비교 연구)

  • Min-Jeong Kim;jun-Young Park;Min-Ju Kim;Eun-Young Jo;Mi-Young Park;Nan-Sook Han;Sook-Nam Hwang
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.291-299
    • /
    • 2023
  • The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF