• 제목/요약/키워드: limit analysis method

검색결과 2,339건 처리시간 0.031초

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

휴리스틱접근법(接近法)에 의한 관리도(管理圖)의 경고한계선(警告限界線)에 관한 연구(硏究) (A Study on the Warning Limit of Statistical Control Chart by the Heuristic Approach)

  • 강효신
    • 품질경영학회지
    • /
    • 제12권2호
    • /
    • pp.15-24
    • /
    • 1984
  • Since W.A. Shewhart (1931) developed the quality control method using the control chart, many theoretical and empirical works about such an analytical method have been done. However there are two major methods relating to the control chart analysis; the conventional 3 sigma control method and the warning limit method which has been suggested as a modification of the former. The conventional 3 sigma method requires to take a remedial action only when a quality characteristic is beyond the control limit (3 sigma). However, once a quality characteristic is over the control limit, searching and repairing an assignable cause requires time consuming job and high costs. Therefore if we set the warning limit between the central line and the control limit, we will be able to take remedial measures before too late. In spite of its advantage, much attention has not been paid to use the control chart with warning limit in Korean industries. The main object of this study is to examine improvement of quality and productivity when the control chart with warning limit is used.

  • PDF

Limit-cycle 항법의 동역학적 안정성 분석 (Analysis of Dynamic Stability of Limit-cycle Navigation Method)

  • 김동한;강수혁;이은진;고국원;남상엽
    • 전자공학회논문지 IE
    • /
    • 제46권3호
    • /
    • pp.33-41
    • /
    • 2009
  • 본 논문에서는 Limit-cycle 항법의 안정성을 분석하고 path follwer를 제안한다. Limit-cycle 항법은 2차 비선형 함수의 특징을 이용하며, 빠른 이동로봇의 움직임을 제어하기 위해 제안되어졌다. Limit-cycle의 수렴반경과 방향을 조절하여 충돌 없이 장애물을 회피하고, 목표점에 도달할 수 있다. 하지만 지금까지 Limit-cycle 항법의 안정성은 연구되어지지 않았다. 따라서 본 논문에서는 이러한 안정성을 분석하고, Limit-cycle 항법을 로봇축구에 적용하여, 시뮬레이션과 실제 실험에서 제안된 방법을 검증한다.

Study on slope stability of waste dump with a weak layer using finite element limit analysis method

  • Chong Chen;Huayong Lv;Jianjian Zhao;Zhanbo Cheng;Huaiyuan Wang;Gao Xu
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.253-263
    • /
    • 2024
  • Slope stability is generally paid more attention to in slope protection works, especially for slope containing weak layers. Two indexes of safety factor and failure model are selected to perform slope stability. Moreover, the finite element limit analysis method comprehensively combines the advantage of the limit analysis method and the finite element method obtaining the upper and lower bounds of the safety factor and the failure mode under the slope stability limit state. In this study, taking a waste dump containing a weak layer as an engineering background, the finite element limit analysis method is adopted to explore the potential failure mode. Meanwhile, the sensitivity analysis of slope stability is performed on geometrical and geotechnical parameters of the waste dump. The results show that the failure mode of the waste dump slope is two wedges if the weak layer is located on the ground surface (Model A), while the slope can be observed as three wedges failure if the weak layer is below the ground surface (Model B). In addition, both failure modes are highly sensitive to the friction angle of the weak layer and the shear strength of waste disposal, and moderately sensitive to the heap height, the dip angle and cohesion of the weak layer, while the toe cutting has limited effect on the slope stability. Moreover, the sensitivity to the excavation of the ground depends on the location of the weak layer and failure mode.

쏘일네일 보강 연직굴착면의 한계 평형법을 이용한 설계기법 개발 (Development of design method using Limit Equilibrium Method applying to vertical excavation reinforcing by soil-nailing)

  • 이섬범;이인;윤배식;김홍택
    • 건설안전기술
    • /
    • 통권47호
    • /
    • pp.56-62
    • /
    • 2008
  • In order to apply the Limit Equilibrium Method generally used for the slope stability analysis to the vertical excavation walls reinforced by soil-nailing, in this study, the Limit Equilibrium Method for the temporary shoring facilities reinforced by soil-nailing was proposed, which is based on the stability for the horizontal displacement. In this study, the relation of the internal friction angles of the ground and the vertical excavation depths was arranged, which is satisfying the stability on the horizontal displacement by using the verification of the Limit Equilibrium Method. And then, the rational reinforcing length of soil-nailing was proposed for the critical areas. In addition, the modified safety ratio satisfying the stability on the horizontal displacement was proposed, when the Limit Equilibrium Method was applied to the vertical excavation walls reinforced by soil-nailing.

  • PDF

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

상용 유한요소 프로그램에 기초한 댐 구조물의 신뢰성해석 (Commercial Finite Element Program-based Reliability Analysis of Dam Structures)

  • 허정원;이정학
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 2003
  • A hybrid structural reliability analysis method that integrates a commercial finite element program and a reliability analysis algorithm is proposed to estimate the safety of real structures in this paper. Since finite element method (FEM) is most commonly and widely used in the analysis and design practice of real structures, it appears to be necessary to use general FEM program in the structural reliability analysis. In this case, simple conventional reliability methods cannot be used because the limit state function can only be expressed in an algorithmic form. The response surface method(RSM)-based reliability algorithm with the first-order reliability method (FORM) found to be ideal in this respect and is used in this paper. The intention of use of RSM is to develop, albeit approximately, an explicit expression of the limit state function for real structures. The applicability of the proposed method to real structures is examined with help of the example in consideration of a concrete dam. Both the strength and serviceability limit states are considered in this example.

  • PDF

극한해석 상계법을 이용한 편심하중하의 기초 지지력 산정 (Computation of Ultimate Bearing Capacity of Eccentrically Loaded Footing By Upper Bound of Limit Analysis Method)

  • 권오균;김명모
    • 대한토목학회논문집
    • /
    • 제12권1호
    • /
    • pp.187-196
    • /
    • 1992
  • 본 연구에서는 편심 하중을 받는 기초의 지지력을 극한해석 상계법을 이용하여 산정하였다. 편심 하중이 작용하는 기초의 지지력을 산정하는 기존의 해석방법으로는 극한평형법을 이용한 Meyerhof 방법과 Saran 방법 등이 있으나, 극한해석법을 이용하여 해석하는 경우는 없다. 이에 본 연구에서는 극한해석 상계법을 이용하여 편심하중이 작용하는 기초의 지지력을 산정하였다. 극한해석 상계법으로 해석하는 경우, 적용하는 파괴메카니즘에 따라 그 결과가 달라지므로, 본 연구에서는 기존의 파괴메카니즘을 속도장 조건에 맞게 변형시킨 후, 극한해석 상계법을 적용하여 그 결과들을 상호 비교하였다. 그리고, 편심하중을 받는 기초 구조물의 지지력에 영향을 미치는 요소들을 연구하기 위하여 흙의 내부마찰각, 기초 바닥면의 마찰각, 편심량, 그리고 상재하중 등을 변화시켜 각 요소들이 기초의 지지력에 미치는 영향을 연구하였다.

  • PDF

개선된 평가점 선정기법을 이용한 응답면기법 (Improved Response Surface Method Using Modified Selection Technique of Sampling Points)

  • 김상효;나성원;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.248-255
    • /
    • 1993
  • Recently, due to the increasing attention to the structural safety under uncertain environments, many researches on the structural reliability analysis have been peformed. Some useful methods are available to evaluate performance reliability of structures with explicit limit states. However, for large structures, in which structural behaviors can be analyzed with finite element models and the limit states are only expressed implicitly, Monte-Carlo simulation method has been mainly used. However, Monte-Carlo simulation method spends too much computational time on repetitive structural analysis. Many alternative methods are suggested to reduce the computational work required in Monte-Carlo simulation. Response surface method is widely used to improve the efficiency of structural reliability analysis. Response surface method is based on the concept of approximating simple polynomial function of basic random variables for the limit state which is not easily expressed in explicit forms of design random variables. The response surface method has simple algorithm. However, the accuracy of results highly depends on how properly the stochastic characteristics of the original limit state has been represented by approximated function, In this study, an improved response surface method is proposed in which the sampling points for creating response surface are modified to represent the failure surface more adequately and the combined use of a linear response surface function and Rackwitz-Fiessler method has been employed. The method is found to be more effective and efficient than previous response surface methods. In addition more consistent convergence is achieved, Accuracy of the proposed method has been investigated through example.

  • PDF

실시간 모의시험을 통한 리밋 사이클 해석 결과 분석 (An Evaluation on the Limit cycle Analysis Methods using the Hardware in the Loop Simulation)

  • 전상운
    • 항공우주기술
    • /
    • 제11권1호
    • /
    • pp.145-157
    • /
    • 2012
  • 상평면상에서 추력기를 사용하는 자세제어 시스템의 리밋 사이클을 해석하는 새로운 기법이 논문에 의해서 제안되었다. 그러나 이것은 소프트 시뮬레이션상에서 Haloulakos 방식보다 제안 방식이 정확함을 보였지만, 실제 시스템으로 검증하지는 못하였다. 그래서 저자의 제안 방식을 KSLV-I 추력기 자세제어 시스템에 대한 실시간 모의시험으로 검증하고, 리밋 사이클 해석에 대하여 실시간 모의시험 결과와 이론적으로 구한 값을 비교/분석하였다.