• 제목/요약/키워드: lignin degradation ability

검색결과 18건 처리시간 0.025초

Lignin을 분해하는 Streptomyces strainsdop 의한 페놀화합물의 분해 (The Degradation of Phenolic Compounds by Lignolytic Streptomyces strains)

  • 김태전
    • 한국환경보건학회지
    • /
    • 제26권3호
    • /
    • pp.86-91
    • /
    • 2000
  • The purpose of this was to investigate the degradation efficiency of phenol compounds(catechol, ferulic acid, protocatechuic acid, syringic acid, vanillic acid) by Streptomyces halstedii scabies SAI-36, Streptomyces avendulas SA2-14, and Strptomyces badius(ATCC 39117, control group). The results were as follows: Catechol showed the degradation efficiency that is lower than 50% in three strains. Ferulic acid and vanillic acid showed high degradation efficiency of 98.8% and 94.5% respectively by Streptomyces lavendulas SA2-14. protocatechuic acid and syringicacid showed high degradation efficiency of 89.6% and 77.9%. The degradation efficiency of catechol by Streptomyces halstedii scabies SAI-36, Streptomyces lavendulas SA2-14 and Streptomyces badius(ATCC 39117) was low as 49.2%, 40.2% and 20.2% respectively. But the degradation of other phenolic compoumds except catechol by Streptomyces laven-dulas SA2-36 and Streptomyces badius(ATCC 39117). The results demonstrated that two experimental strains are superior ability to control group in degradation of phenol compounds and Streptomyces lavendulas SA2-14 was superior of two experimental strain. This results were consistent with previous research results that Streptomyces lavendulas SA2-14 was the best strain in degradation ability for lignin, decoloration abilities for variousdyes, and various enzyme production abilities. Therefore, it is suggested that lignin can be used as a indicator when selecting Actinomycetes for degradation of non-degradable materials such as phenol compounds.

  • PDF

미동정 부후균에 의한 소나무재의 Lignin 분해와 주사전자현미경(SEM)을 이용한 관찰 (Lignin Degradation of Pine Wood by Unidentified Decay Fungi and Observation by Scanning Electron Microscope)

  • 박헌;민경희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권4호
    • /
    • pp.71-80
    • /
    • 2003
  • 목재의 주성분 중 가장 분해가 어려운 리그닌을 분해하는 균주를 선발하기 위해 산림지역에서 채취한 부후목과 자실체로부터 균을 분리하였다. 리그닌 분해능은 활엽수보다 미생물 분해가 어렵다고 알려진 침엽수인 소나무재에 미생물을 처리하여 Klason 리그닌 정량을 통해 조사하였다. 또한 선발균에 의한 소나무재의 분해과정과 부후정도를 주사전자현미경(Scanning Electron Microscope ; SEM)을 이용해 조사하였다. 선발 균주 중 CJ-6에서 소나무 리그닌의 분해율이 49.48%로 가장 높았으며, 이것은 리그닌 분해 우수 균주로 알려진 Trametes versicolor의 40.58%와 비교해 보았을 때 리그닌 분해력이 더 우수하였다. 균주들 중 리그닌 분해력이 좋게 나타난 2개의 균주를 대상으로 부후에 의한 목재조직의 변화를 관찰하였는데 두 균주의 부후형이 비슷한 경향을 나타내었다. 부후 20일 경과에서는 균사의 침입은 있었으나 아직 목재는 건전한 상태를 유지하고 있었으며, 60일 간의 부후에서는 부후가 어느 정도 진행되어 가도관 벽과 방사조직의 세포벽의 일부가 분해되어 있음을 알 수 있었다. 100일간 부후가 진행된 경우에는 부후가 상당히 진행되어 가도관 세포벽 안쪽이 분해가 많이 진행되어 있었으며, 방사조직의 세포벽이 많이 분해되어 있어 세포간의 구별이 어려웠다.

Lignocellulose의 분해 및 이용을 위한 Lignin 분해 세균의 분리 (Isolation of a Lignolytic Bacterium for Degradation and Utilization of Lignocellulose)

  • 김용균;김한수;김근기;손홍주;이영근
    • 생명과학회지
    • /
    • 제12권4호
    • /
    • pp.392-398
    • /
    • 2002
  • Lignocellulose 분해 이용을 위해 토양 등에서 lignin분해 능력이 우수한 세균을 분리 및 동정함으로서 방향족 화합물의 이용을 위한 생물전환의 기초를 확보하고자하였다. 토양 등의 시료로부터 38주의 리그닌 분해 균주를 분리하였다. 분리된 LG2를 공시 균주로 선정하여 형태학적, 배양학적 및 생리학적 특성을 조사한 결과 Pseudomonas sp. LG2로 명명하였다. 이 균주는 리그닌을 분해 할 수 있었으며, 리그닌 함유 배지에 배양하여 배양 분해 산물을 HPLC로 분석한 결과 다수의 방향족 화합물을 생산하였다 Poylacrylamide gel활성 분석에 의해서 3종류로 구성된 peroxidase가 조사되었다.

Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun;Lee, Il-Seok;Song, Hee-Sang;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.737-752
    • /
    • 2000
  • Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

  • PDF

Screening of New Mediators for Lignin Degradation Based on Their Electrochemical Properties and Interactions with Fungal Laccase

  • Shin, Woon-Sup;Cho, Hee-Yeon;Cho, Nam-Seok
    • 펄프종이기술
    • /
    • 제38권5호
    • /
    • pp.1-8
    • /
    • 2006
  • This study was performed to evaluate extensive electrochemical characteristics of 23 commercially available mediators for laccase. Electrochemical properties, interactions with laccases, and ability to degrade lignin were compared for selected mediators. Among them, NNDS has very similar electrochemical properties in terms of reversibility and redox potential (about 470 mV vs. Ag/AgCl at pH=7) compared to ABTS which is a well-known mediator. Specific activity of purified laccase from Cerrena unicolor was determined by both 2,2'-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 1-nitroso-2-naphthol -3,6-disulfonic acid (NNDS). The specific activity of the laccase was 23.2 units/mg with ABTS and 21.2 units/mg with NNDS. The electron exchange rate for NNDS with laccase was very similar to that for ABTS, which meant that NNDS had similar mediating capability to ABTS. Determining methanol concentration after reacting with laccase compared to lignin degradation capabilities of both ARTS and NNDS. ARTS or NNDS alone cannot degrade lignin, but in the presence of laccase enhanced the rate of lignin degradation. ABTS showed better activity in the beginning, and the reaction rate of NNDS with lignin was about a half of that of ABTS at 10 minute, but the final concentration of methanol produced in 1 hour was very similar each other. The reason for similar methanol concentration for both ABTS and NNDS can be interpreted as the initial activity of ABTS was better than that of NNDS, but ABTS would be inhibited laccase activity more during the incubation.

Degradation of Polycyclic Aromatic Hydrocarbons by Selected White-rot Fungi and the Influence of Lignin Peroxidase

  • Kim, Mi-Sun;Huh, Eun-Jee;Kim, Hyun-Kyung;Moon, Kwang-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권2호
    • /
    • pp.129-133
    • /
    • 1998
  • The white-rot fungi Phanerochaete chrysosporium ATCC 24725, Pleurotus ostreatus ATCC 32783, Lentinus edodes ATCC 24462, and Trametes versicolor ATCC 42530 were studied for their ability to degrade lignin, phenanthrene, and anthracene. Lignin in rice-straw was degraded by 14.4, 28.73, and 33.88% by P. chrysosporium, T. versicolor, and P. ostreatus, respectively. Approximately 12% and 83% of phenanthrene was degraded in 1 and 5 days, respectively, when the pre-grown mycelIium matrix of P. ostreatus. was incubated with 10 ppm of phenanthrene in modified Kirk's medium (nitrogen limited) at $25^{\circ}C$. Approximately 2%> and 61% of phenanthrene was degraded when the phenanthrene concentration was increased to 30 ppm. Similar trends were observed with phenanthrene using P. chrysosporium. Mycelial growth of T. versicolor was less inhibited at 30 ppm phenanthrene than for P. ostreatus and P. chrysosporium. Better degradation of phenanthrene by T. versicolor may be attributed to better mycelium growth. One hundred percent of 15 ppm anthracene was degraded in 10 days by both P. chrysosporium and T. versicolor. 40 ppm anthracene inhibited the mycelial growth of P. chrysosporium. lignin peroxidase activity, which was previously reported to be involved in initial phenanthrene oxidation, was also detected from the culture broth of the strains tested. The rates of lignin peroxidase production in the cultures were not consistent with the rate of PAH hydrolysis during incubation.

  • PDF

Biodegradation of 2,4,5-Trichlorophenol Using Cell-Free Culture Broths of Phanerochaete chrysosporium

  • Choi, Sueh-Yung;Moon, Seung-Hyeon;Lee, Jae-Suk;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.759-763
    • /
    • 2000
  • Cell-free culture broth of Phanerochaete chrysosporium has been adopted to biologically degrade 2,4,5-trichlorophenol. Two different medium compositions of nitrogen-sufficient and nitrogen-limited were compared for their distribution of isozymes, activity of lignin peroxidase, and production of oxalate. The two different culture broths were tested for their ability to degrade 2,4,5-trichlorophenol, and the biodegradation efficiency was estimated in terms of the disappearance of 2,4,5-trichlorophenol. The degradation efficiency for the nitrogen-limited culture broth was higher than that of the nitrogen-sufficient culture broth, since the nitrogen-limited culture broth induced lignin peroxidases (LiPs) and manganese peroxidases (MnPs), and contained sufficient oxalate for producing necessary radicals. Finally, the possible mechanism of 2,4,5-CP degradation using the nitrogen-limited culture broth was proposed.

  • PDF

Qualitative Evaluation of Ligninolytic Enzymes in Xylariaceous Fungi

  • Lee, Yang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.462-469
    • /
    • 2000
  • Sixty-one strains representing the main genera of wood-decaying xylariaceous fungi (mainly in Daldinia, Hypoxylon, Kretzschmaria, Rosellinia, Penzigia, and Xylaria) were tested for their ability to produce ligninolytic enzymes. The phenol oxidase activity and fungal growth of the xylariaceous fungi on gallic aicid and tannic acid media showed a variation in their ability to degrade lignocellulose. A number of species showed equal 개 betterligninolytic enzyme activities than Coriolus versicolor, a known basidiomycete wood-degrader. A large variation of the enzyme activity was observed by individual strains as well as a substantial variation between the isolates of the same species. The most frequent ligninolytic enzymes were peroxidase and general oxidase. With 19% of the strains tested, peroxidase showed the strongest ligninolytic enzyme activity, while tyrosinase activity was detected only in 7% of the strains. All strains of Kretzschmaria and Rosellinia tested was positive for laccase. Xylariaceous fungi were able to degrade the macromolecule, lignin, using each specific ligninolytic enzyme in the specfic lignin degradation pathway.

  • PDF

Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes

  • Jang, Kab-Yeul;Cho, Soo-Muk;Seok, Soon-Ja;Kong, Won-Sik;Kim, Gyu-Hyun;Sung, Jae-Mo
    • Mycobiology
    • /
    • 제37권1호
    • /
    • pp.53-61
    • /
    • 2009
  • The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP).

중위도 산림토양에서 분리한 부식질 분해능이 있는 Pseudomonas kribbensis CHA-19의 유전체 염기서열 초안 (Draft genome sequence of humic substances-degrading Pseudomonas kribbensis CHA-19 from temperate forest soil)

  • 김덕규;이형석
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.177-179
    • /
    • 2019
  • 미국 뉴저지주 중위도 산림토양에서 부식산(천연 복합유기화합물인 부식질의 주요 구성성분) 분해능이 있는 세균 균주 Pseudomonas kribbensis CHA-19를 분리하였으며, 이후 또 다른 토양 유기물인 리그닌과 리그닌 유래의 페룰산(ferulic acid)과 바릴린산(vanillic acid)의 분해능을 확인하였다. 부식질 초기 저분자화 효소(예, dye-decolorizing peroxidase와 laccase-like multicopper oxidase)와 부식질 유래의 다양한 저분자 분해산물들을 분해하는 효소(예, vanillate O-demethylase와 biphenyl 2,3-dioxygenase)를 탐색하기 위해 CHA-19 게놈염기서열을 분석하였다. 최종 확보한 효소유전자 정보는 토양세균의 부식질 분해경로 제안에 사용되었다.