• Title/Summary/Keyword: lightweight design optimization

Search Result 129, Processing Time 0.028 seconds

Lightweight of Movable Parts for Energy Reduction of 5-axis Machining Center (5축 머시닝센터의 소비 에너지 저감을 위한 운동요소 경량화)

  • Lee, Myung Gyu;Nam, Sung Ho;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.474-479
    • /
    • 2013
  • Mass reduction of the machine tool movable parts is a tool for achieving lower energy demands of the machine tool operation. The realization of lightweight design in machine tool can be achieved by structural lightweight design and material lightweight design. In this study, topology optimization strategy was applied to design optimized structures of movable parts of 5 axis machining center. The weight of ram which has most significant influence on the stiffness of whole machine tool was reduced without stiffness deterioration. The redesigned optimized ram has 24.2% less weight while maintaining the same displacement caused by cutting force.

An efficient procedure for lightweight optimal design of composite laminated beams

  • Ho-Huu, V.;Vo-Duy, T.;Duong-Gia, D.;Nguyen-Thoi, T.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.297-310
    • /
    • 2018
  • A simple and efficient numerical optimization approach for the lightweight optimal design of composite laminated beams is presented in this paper. The proposed procedure is a combination between the finite element method (FEM) and a global optimization algorithm developed recently, namely Jaya. In the present procedure, the advantages of FEM and Jaya are exploited, where FEM is used to analyze the behavior of beam, and Jaya is modified and applied to solve formed optimization problems. In the optimization problems, the objective aims to minimize the overall weight of beam; and fiber volume fractions, thicknesses and fiber orientation angles of layers are selected as design variables. The constraints include the restriction on the first fundamental frequency and the boundaries of design variables. Several numerical examples with different design scenarios are executed. The influence of the design variable types and the boundary conditions of beam on the optimal results is investigated. Moreover, the performance of Jaya is compared with that of the well-known methods, viz. differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The obtained results reveal that the proposed approach is efficient and provides better solutions than those acquired by the compared methods.

Lightweight Optimization of Infant Pop-up Seat Frame Using DMTO in Static Condition (DMTO 기법을 활용한 정적 하중환경의 유아용 팝업시트 프레임의 경량화)

  • Hong, Seung Pyo;Cha, Seung Min;Shin, Dong Seok;Jeon, Euy Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-110
    • /
    • 2022
  • This paper proposes a solution to the problems of manufacturing cost and processability by applying discrete material and thickness optimization (DMTO) and minimizing the use of high-strength, lightweight materials in the optimization process. A simple infant pop-up seat model was selected as the application target, and the weight reduction effect and variation in strength according to the optimization results were observed. In this study, a simplified finite element model of an infant pop-up seat frame was first constructed. The model was used to perform a static structural analysis to verify the weight and strength of each part. The D-optimal design of the experimental method was then used to observe the influence of each part on the weight and strength. This process was applied using discrete thickness optimization (DTO) (which applies high-strength, lightweight materials and optimizes only the thickness) and DMTO (which considers both the material and thickness). The DTO and DMTO results were compared to verify the design method that determines the major parts and simultaneously considers the material and thickness. Accordingly, in this study, an optimal lightweight design that satisfied the strength standards of the seat frame was derived. Furthermore, discretization parameters were used to minimize the application of high-strength, lightweight materials.

Shape Design based on Topology Optimization for Manufacturing of Lightweight Valve Disc by 3-D Printing (3차원 프린팅에 의한 경량 밸브 디스크 제조를 위한 위상최적화 기반의 형상 설계)

  • Kim, Taehyung
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • In this study, the lightweight design of butterfly valve disc component for power plant based on topology optimization was performed. Here, commercial finite element (FE) analysis software was used. The external shape of the basic disc model was not deformed, and the internal element density was removed to make it lightweight. Optimal design was performed each other after the disc plate and two brackets attached on the surface of the disc were separated. Once the optimal shapes were selected, they were assembled to build up the 3-D lightweight valve disc model. After applying pressure to this model, FE analysis was performed to confirm the structural safety.

A Study on Lightweight Design of Double Deck High-Speed Train Hybrid Carbody Using Material Substitution and Size Optimization Method (소재대체법과 치수최적화 기법을 이용한 2층 고속열차 하이브리드 차체 구조물의 경량 설계 연구)

  • Im, Jae-Moon;Jung, Min-Ho;Kim, Jong-Yeon;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • The purpose of this paper is to suggest a lightweight design for the aluminum extrusion carbody structure of a double deck high-speed train using material substitution and size optimization method. In order to conduct material substitution, the topology optimization was used to determine the application parts of sandwich composites at the carbody structures. The results of analysis showed that sandwich composites could be applied at roof and 2nd underframe. The size optimization was used to determine thickness of the aluminum extruded and carbon/epoxy composite. The design variable, state constraint and objective function were formulated to solve the size optimization, and then, the feasible design was presented by these conditions. The results of the lightweight design showed that the weight of double deck high-speed train hybrid carbody could be reduced by 2.18(17.70%) tons.

A study on optimum design of a lightweight mirror (경량화 반사경의 최적설계에 관한 연구)

  • 박강수;박현철;조지현;윤성기;이준호
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.443-448
    • /
    • 2003
  • A study on optimum design of the lightweight mirror of a satellite camera is presented. An optical surface deformation of the lightweight mirror, which is a principal component of the camera system, is an important factor affecting the optical performance of the whole camera system. In this study, optimum design of the lightweight mirror is presented. Total weight of the mirror to reduce the optical surface deformation and the launching cost is used as an objective function. Peak-to-valley value and natural frequency of the mirror are given as constraints to the optimization problem. The sensitivities of the objective function and constraint are calculated by a finite difference method. The optimization procedure is carried out by the commercial optimizer, DOT. As a verification of the optimum design of the mirror, two design examples are treated. In the real application example, the lightweight mirror with 600mm effective diameter is treated. The optimized results with various design variables, which are obtained by considering thickness limitations, are analyzed.

Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm (가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계)

  • Hong Jin-Hyun;Park Jong-Kweon;Choi Young-Hyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

A Study of Optimal Design for Mg Armrest Frame by using Response Surface Method (반응표면법을 이용한 마그네슘 암레스트 프레임의 최적설계 연구)

  • Kim, Eun-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.797-804
    • /
    • 2012
  • Magnesium has a long tradition of use as a lightweight material in the field of automotive industry. This paper presents the design optimization process of Mg armrest frame to minimize its weight by replacing the steel frame. formerly, the analysis of steel armrest frame was peformed to determine the design specifications for Mg armrest frame. The initial design of Mg armrest frame was carried out by topological optimization technique. After six types of design variables and four types of response variables were defined, DOE(Design of Experiment) and RSM (Response Surface Method) were applied in order to measure sensitivity of design variables and realize optimization through regression model. After design optimization, the weight of the optimized Mg armrest frame was reduced by about 3% compared to the initial design of the Mg frame and was decreased by 41.7% in comparison with that of the steel frame. Some prototypical armrest frames were also made by die casting process and tested. The results were satisfying for its design specifications.

Structural Design Optimization of the Aluminum Space Frame Vehicle (알루미늄 스페이스 프레임 차량의 구조 최적화 설계 기법)

  • Kang, Hyuk;Kyoung, Woo-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-180
    • /
    • 2008
  • Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.