Abstract
Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.