• Title/Summary/Keyword: lighting loads

Search Result 37, Processing Time 0.021 seconds

A Study on the Electronic Ballast for Neon Lamp (네온 램프용 전자식 안정기에 관한 연구)

  • 강범석;김희준
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.314-318
    • /
    • 1998
  • This paper discusses the development of electronic ballast for neon lamp as an application of a zero voltage switching high frequency inverter. Abnormal increase of secondary voltage due to grounded fault or partial damage of serial arranged loads is clarified and the protection circuit for this abnormal voltage increase is proposed. Also stable lighting condition for removing the unstable characteristics due to different load conditions is proposed.

  • PDF

A Low Cost Multiple Current-Voltage Concurrent Control for Smart Lighting Applications (저가형 스마트 LED 조명 구동을 위한 다수의 전류-전압 동시 제어 방법)

  • kim, Tae-hoon;Lee, Sang-hoon;yang, Joon-hyun;Im, Chang-soon;Hyun, Dong-seok;Kim, Rae-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.179-180
    • /
    • 2011
  • This paper focuses on the Current-Voltage concurrent control method devoted to the multiple LED (light-emitting diode) string driver. Isolated DC to DC converter with cascaded chopping switch is proposed for smart lighting system such as light with sensor or back light unit of display, which need to control the current of parallel connected multiple LED stings and regulate DC voltage for micro controller for brightness control. The proposed circuit regulates the current of parallel connected multiple LED strings and additional DC voltage output simultaneously. To verify the performance, experimental results are presented based on the prototype board. 5V, 1A voltage mode electric load and two LED strings with different forward voltages are used for output loads. 23W output power is achieved and measured efficiency is in the range of 85%-87%

  • PDF

A Study on the Heating and Cooling Energy Load Analysis of the KNU Plant Factory (KNU 식물공장의 냉난방 에너지 부하 해석에 관한 연구)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1419-1426
    • /
    • 2012
  • The heating and cooling energy load of the KNU plant factory was analyzed using the DesignBuilder. Indoor temperature set-point, LED supplemental lighting schedule, LED heat gain, and type of double skin window were selected as simulation parameters. For the cases without LED supplemental lighting, the proper growth temperature of lettuce $20^{\circ}C$ was selected as indoor temperature set-point together with $15^{\circ}C$ and $25^{\circ}C$. The annual heating and cooling loads which are required to maintain a constant indoor temperature were calculated for all the given temperatures. The cooling load was highest for $15^{\circ}C$ and heating load was highest for $25^{\circ}C$. For the cases with LED supplemental lighting, the heating load was decreased and the cooling load was 6 times higher than the case without LED. In addition, night time lighting schedule gave better result as compared to day time lighting schedule. To investigate the effect of window type on annual energy load, 5 different double skin window types were selected. As the U-value of double skin window decreases, the heating load decreases and the cooling load increases. To optimize the total energy consumption in the plant factory, it is required to set a proper indoor temperature for the selected plantation crop, to select a suitable window type depending on LED heat gain, and to apply passive and active energy saving technology.

Development of an Energy Management Algorithm for Smart Energy House (스마트에너지하우스 구현을 위한 에너지 수요관리 알고리즘의 개발)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.515-524
    • /
    • 2010
  • Recently, many actions are taking to accelerate progress toward social consensus and implementation of Smart Grid. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. The most distinguished element will be Advanced Metering Infrastructure (AMI) that will be installed to every end-use consumer's home or building and optimize the energy consumption of the end-use consumer. The key function of AMI is energy management capability that coordinates and optimally controls the various loads according to the operating condition and environments. In this study, we figure out the basic function of AMI in Smart Energy House that can be defined as a model house implementing in Smart Grid. This paper proposes the energy management algorithm that will be implemented in AMI at Smart Energy House. The paper also show how energy saving in Smart Energy House can be achieved applying the proposed algorithm to an actual house model that has mainly lighting, air-conditioning, TV loads.

Analysis of Series Arc-Fault Signals Using Wavelet Transform (웨이블렛 변환을 이용한 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.494-500
    • /
    • 2008
  • This paper presents the analyzed result of the series arc fault current by using the discrete wavelet transform. The series arcing is caused by a loose connection in series with the load circuit. The series arc current is limited to a moderate value by the resistance of the device connected to the circuit, such as an appliance or a lighting system. The amount of energy in the sparks from the series arcing is less than in the case of parallel arcing but only a few amps are enough to be a fire hazard. Therefore, it is hard to detect the distinctive difference between a normal current and a intermittent arc current. This paper, presents the variation of the ratio of peak values and RMS values of the series arc fault current, and proposes the novel series arc fault detecting method by using the discrete wavelet transform. Loads such as a CFL lamp, a vacuum cleaner, a personal computer, and a television, which has the very similar normal current with the arc current, were selected to confirm the novel method.

Window-to-Wall-Ratio for Energy Reduction in Early Design Stage of Residential Building

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.89-94
    • /
    • 2017
  • In Korea, it is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to assess the optimal window-to-wall ratio of multi-rise residential units in the early design phase in Korea. The study analyzed the variation of annual heating and cooling energy load in two apartment prototype units located in Seoul city using different WWRs. The analysis was conducted using Autodesk Ecotect Analysis 2011 tool. The study found for total annual building load reductions WWR on the south and north face should be studied independently based on the room function. It also found reducing the WWR for bedrooms and windows on the northern façade resulted in reduced total annual building load.

Comparison of VUF using Resistor & Inductive Load (저항성 및 유도성 부하의 운전시 전압불평형율의 비교)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Jong-Han;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1062-1064
    • /
    • 2005
  • 3 phase 4-wire system has been widely used in the customer's application due to merit of 1 bank construction of loads such as 1-phase lighting, heat and 3-phase motor. But if the load distribution is not uniformed by the operation conditions, voltage unbalance is highly appeared by the difference of each phase current value. Especially, if the linear load such as resistance or inductive load has different power factor value, voltage unbalance factor is not the same due to the phase angle and magnitude of each phase voltage. In this paper, we composed the measurement device and analyzed by varying of load pattern.

  • PDF

Evaluation of Lateral Load Resistance and Heating/Cooling/Lighting Energy Performance of a Post-disaster Refugees Housing Using Lightweight composite Panels (경량 복합패널을 활용한 구호주거의 횡하중 저항성능 및 냉난방조명 에너지성능 평가)

  • Hwang, Moon-Young;Lee, Byung-Yun;Kang, Su-Min;Kim, Sung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.252-262
    • /
    • 2019
  • Following the earthquake in Gyeongju (2016) and Pohang (2017), South Korea is no longer a safe place for earthquakes. Accordingly, the need for shelters suitable for disaster environments is increasing. In this study, a lightweight composite panel was used to produce post-disaster housing for refugees to compensate for the disadvantages of existing evacuation facilities. For this purpose, an evaluation of structural performance and thermal environment for post-disaster housing for refugees composed of lightweight composite panels was performed. To assess the structural performance, a lateral loading test was conducted on a system made of lightweight composite panels. The specimens consisted of two types, which differed according to the bonding method, as a variable. In addition, the seismic and wind loads were calculated in accordance with KBC 2016 and compared with the experimental results. Regarding the energy performance, optimization of south-facing window planning and window-wall ratio and solar heat gain coefficient were analyzed to minimize heating, cooling, and lighting energy. As a result, the specimens composed of lightweight composite panels will perform sufficiently safely for lateral loads and the optimized window planning will lead to a low-energy operation.

A High-precision AC Power Control System for Variable Loads Application (가변부하 적용을 위한 고정밀 교류전원 제어시스템)

  • Han, Wun-Dong;Shon, Jin-Geun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.74-81
    • /
    • 2008
  • The control system of high-precision AC power is important in traffic management lighting and beaconing of aerodromes, etc. To control AC power supply in these load characteristics, inverter systems of AC/DC/AC conversion are widely used in high-precision current control. Therefore, in this paper, a inverter system of constant current regulation using improved measuring technique of feedback current is proposed. Proposed measuring techniques improve response and precision in that it use moving average method of instantaneous RMS for measuring current sensing. Results of the computer simulation and experiment prove the effects of proposed system.

  • PDF

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.