• 제목/요약/키워드: light-weight steel

검색결과 250건 처리시간 0.023초

경량콘크리트를 사용한 합성 철선트러스 데크의 푸쉬 아웃 성능 실험 (Push-out Performance Test of Composite Steel Truss Deck using Light Weight Concrete)

  • 최병정;문효진;한홍수;한권규
    • 한국강구조학회 논문집
    • /
    • 제21권1호
    • /
    • pp.15-26
    • /
    • 2009
  • 본 연구의 목적은 실험을 통하여 복합 데크슬라브 시스템에 사용되는 쉬어 커넥터의 전단 성능을 연구하는 것이다. 경량콘크리트와 선조립 철선트러스를 사용하여 복합 데크슬라브를 가진 6개의 실험체를 제작하여, Push-out test를 실시하였다. 실험체는 철선트러스와 아연강판의 설치유무로 구분하여 DP, NDP, Solid의 세 가지 그룹으로 분류하였다. 전단 성능 실험을 통하여 실험체의 파괴양상, 거동, 하중-변위 관계를 분석하고, 실험값과 기존의 기준식을 비교하였고, 다음과 같은 결론을 도출하였다. 첫째, DP 및 NDP 계열의 파괴는 스터드 파괴이며, Solid계열의 파괴는 콘크리트 파괴였다. 둘째, 전단내력을 확인한 결과 NDP계열이 가장 우수한 내력을 갖는 것으로 나타났다. 셋째, 각 실험체의 스터드는 유사한 전단거동을 하였고, 스터드와 콘크리트는 항복시점까지 일체 거동을 하였다. 넷째, 다른 두 개의 기준식과 비교했을 때 ACI318-05의 기준식이 가장 근접한 스터드 전단력을 예측할 수 있는 것으로 확인되었다.

차체용 고장력 강판의 동적 인장 특성 평가 (Dynamic Tensile Characteristics of the High Strength Steel Sheet for an Auto-body)

  • 김석봉;허훈;신철수;김효균
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.171-176
    • /
    • 2007
  • An important challenging issue in the automotive industry is the light-weight, safe design and enhancement of crash response of an auto-body structures. These objectives lead to increasing adoption of high strength steel sheet for inner and outer auto-body members. This paper evaluates the dynamic tensile characteristics of high strength steel sheets, HS45R, TRIP60, DP60 and DP100, along the rolling direction and transverse direction. Static tensile tests were carried out at the strain rate of 0.003/sec using the static tensile machine (Instron 5583). Dynamic tensile tests were carried out at the range of strain rate from 0.1/sec to 200/sec using a high speed material testing machine developed. The tensile tests acquire stress-strain relation and strain rate sensitivity of each material. The experimental results show two important aspects for high strength steels: the flow stress increases as strain rate increases; the strain hardening decreases as the tensile stress increases. The experiments also produce interesting results that the elongation does not decrease even when the strain rate increases.

이종 주조알루미늄-고장력강의 겹치기 마찰교반접합에서 툴회전속도에 따른 기계적 특성평가 (Evaluation of Mechanical Properties with Tool Rotational Speed in Dissimilar Cast Aluminum and High-Strength Steel of Lap Jointed Friction Stir Welding)

  • 박정훈;박성환;박수형;주영환;강명창
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.90-96
    • /
    • 2019
  • Recently, friction stir welding of dissimilar materials are one of the biggest issues in terms of light-weight and eco-friendly technology of the automotive, aircraft and ship industry. In this study, friction stir welding of dissimilar materials is introduced with different tool rotational speed. Materials used in experimentation consist of A357 gravity cast aluminum alloy and FB590 high-strength steel plates. Dissimilar materials of plate type are fabricated with width of 150mm, length of 300mm and thickness of 3mm and welding is carried out by the lap joint method. The correlation between probe length and mechanical properties were investigated according to rotational speed and welding speed at tool tilt angle 0 degree. Consequently, feasibility of FSWed dissimilar materials were successfully presented in case of cast aluminum and high-strength steel at lap joint method.

980MPa급 열연 후판재 버링 공정의 변수 최적화 연구 (Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal)

  • 김상훈;도두이퉁;박종규;김영석
    • 소성∙가공
    • /
    • 제30권6호
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향 (The Effect of Fatigue Fracture in shot peening Marine structural steel at stress ratio)

  • 박경동;한건모;진영범
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.138-144
    • /
    • 2003
  • Rencentely, the request for the light weight is more incresed in the area of industrial environment and machinery and consistent effort is needed to accomplish high strength of material for the direction of light weight. we got the following characteristic from crack growth test carried out in the range of stress ration of 0.1, 0.3 and 0.6 by means of opening mode displacement. At the content stress ratio, the threshold stress intensity factor crack range ${\Delta}K_{th}$in the early stage of fatigue crack growth (Region I) and dtress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. Fatigue life shows more improvement in the Shot-peened material than in the Un-peening material. And compressive residual stress of surface on the Shot peening processed operate resistance force of fatigue. So we can obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is depend on Paris equation. (2) Although the maxium compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maxium compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

공업화 구조 농촌주택의 거주성 평가 (Dwelling Quality Evaluation of Rural Houses Constructed with Industrialized Wall Structures)

  • 최윤정;윤정숙
    • 한국주거학회논문집
    • /
    • 제13권5호
    • /
    • pp.9-20
    • /
    • 2002
  • The purpose of this study are to evaluate the dwelling quality of rural houses constructed with industrialized wall structures(ALC; Autoclaved Light weight Concrete, SRC; Steel Fiber Reinforced Concrete, ST'L; Steel Framed Insulating Panel), and to establish a method of dwelling quality evaluation. The questionnaire survey by mail was done, for investigating the residents' responses to indoor environment, durability, and economic aspect. The respondents are 118 residents living in rural houses constructed with industrialized wall structures. Physical elements of indoor environment(temperature, humidity, air quality, and noise level) were measured in three sample houses, which were selected considering of architectural characteristics. The findings are as follows; 1) As a result of questionnaire survey, residents' responses to dwelling quality are generally positive. 2) As a result of measurement, indoor environments of sample houses are in relatively comfortable condition. 3) As a summary of research, ALC and ST'L are evaluated as recommendable structures for a rural house.

대형 컨테이너선 건조를 위한 고능률 용접기술 (High Productive Welding Technologies for Large Container Ship)

  • 구연백;성희준;최기영;김경주
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.80-86
    • /
    • 2009
  • In order to improve productivity of large container ship construction, large heat input and/or high productive welding technologies are necessary. This can be achieved by the joint research and cooperation among steel maker, welding consumable company, welding equipment company and ship yards. Two electrodes SAW process is effective the plate butt welding and partial joint welding, while FGB welding process is for the connection of block to block joint. The higher strength and thicker steel is developed, the more reliable welding procedure such as two electrodes EGW including light weight welding equipment should be developed.

  • PDF

강판 및 탄소섬유쉬트를 이용한 중공슬래브교의 보강 효과에 관한 실험 연구 (A Experimental Study on the Reinforcing Effects of RC Voided Slab Bridge with Steel Plate/CFS)

  • 구현본;이정우;정광회;정연주;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.787-792
    • /
    • 2002
  • The voided slab have many advantages, light weight, high load-distribution capacity, low cost and beautiful appearance, etc. But they have also many cracks due to difficulties in designs and construction, analysis, shrinkage, installation and rising force of voided tube. This paper presents the retrofit effects with steel plate(SP)/carbon fiber sheet(CFS) of RC voided slab. As a results of this study, it proved that the strip pattern has to be profitable than full-face pattern in performance such as crack, ultimate loads, stiffness. Retrofit length has many influence on retrofit effects, as the length increases, performance and stability of end blocks higher. Also, it proved that the retrofit on full-section has to be profitable than voided-section in performance, and the overlay length of CFS is desirable to extent approximately and welding(V-cut) has to be efficient than anchors in SP connection. But the kinds of end block and anchor has not influence on retrofit effects.

  • PDF

'충전식 전기예초기' 혜드 부분의 개선 (Improvement of a Head Part of 'Chargable Electric Weeder')

  • 오세훈;심재현;남원기
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2006년도 동계 학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2006
  • Purposes of this research are convenience of manufacture, quality sophistication and reduction of a/s' ratio by that improve several shortcomings of existing steel housing The Housing of head is changed existent steel housing to ABS (acrylonitrile butadiene styrene) copolymer housing and its shape is changed. It does not need that paint housing by paint. so We may not care scar at storage or manufacture. The fast work speed and A/S is possible by combining a safety plate and a housing by volt and spring washer. When disjoint head part, there is no damage of safety plate and housing. Noise is disappeared by resonance phenomenon in early rpm at motor moving. When neck part of housing and a middle pipe are connected by drill nasa, the work is easier Also, there is sense of security little more catching motor in housing The improvement accomplished much improvements including light weight of head part.

  • PDF