• Title/Summary/Keyword: light-frame wood house

Search Result 14, Processing Time 0.025 seconds

Air Tightness Performance of Residential Timber Frame Buildings

  • Kim, Hyun-Bae;Park, Joo-Saeng;Hong, Jung-Pyo;Oh, Jung-Kwon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.89-100
    • /
    • 2014
  • Energy consumption statistics in 2005 from the Korea Energy Management Corporation show that building energy usage was about 24.2% of total domestic energy consumption, and 64% of total building energy usage was consumed by residential buildings. Thus, about 10% of total domestic energy consumption is due to the heating of residential buildings. Building energy can be calculated by the configuration of the building envelope and the rate of infiltration (the volume of the infiltration of outdoor air and the leakage of indoor air), and by doing so, the annual energy usage for heating and cooling. Therefore, air-tightness is an important factor in building energy conservation. This investigate air infiltration and various factors that decrease it in timber frame buildings and suggest ways to improve air-tightness for several structural types. Timber frame buildings can be classified into light frame, post and beam, and log house. Post and beam includes Han-ok (a Korean traditional building). Six light frame buildings, three post and beam buildings, one Korean traditional Han-ok and a log house were selected as specimens. Blower door tests were performed following ASTM E779-03. The light frame buildings showed the highest air-tightness, followed by post and beam structures, and last, log houses.

Density and Water Absorption Ratio Property of the Magnesium Oxide Matrix According to Wood flour Addition Ratio (목분의 첨가량에 따른 산화마그네슘 경화체의 밀도 및 흡수율 특성)

  • Jung, Byeong-Yeol;Kim, Heon-Tae;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.236-237
    • /
    • 2014
  • Recently, it changes to the frame construction in the wall type structure for the life span improvement of the apartment house of our country. The execution of the light panel increased while the execution of the frame construction increased. Therefore, the density and absorption ratio of the magnesium oxide matrix according to the wood flour amount of addition ratio property try to be analyze for the lightweight of the surface material of the light panel. The test result, the density has been declined as the addition ratio increase of the wood flour. In the case of the water absorption ratio, water absorption ratio has been increased as addition ratio increase of wood flour. However, wood flour addition ratio 15% determined the most appropriate when considering the density and water absorption ratio.

  • PDF

Improvement of Energy Efficiency in Wood Frame House with Energy Efficient Methods (건물 에너지 절약요소 적용을 통한 목조주택의 에너지 성능 개선)

  • Kim, Sejong;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This research was carried out to evaluate and raise the energy efficiency of wood frame house. The commercial solution program CE3 (Construction Energy Efficiency Evaluation) was used for simulating the energy consumption in the single-family wood frame house. The results showed that the annual heating energy demand of the house was 160 kWh per 1 $m^2$ floor area. In order to decrease the heating energy demand, the following energy efficiency methods were applied to the simulation : a) simplification of building shape, b) decrease of windows area, c) application of high performance windows (with low thermal transmittance) and d) application of heat recovery ventilator. In case of replacement of the windows with high performance one with thermal transmittance 1 $W/m^2{\cdot}K$, the lowest heating demand of 80 $kWh/m^2{\cdot}a$ was obtained. The best combination of methods, application of high performance windows and heat recovery ventilator, showed heating energy demand 34.5 $kWh/m^2{\cdot}a$.

Airtightness of Light-Frame Wood Houses built in Daejeon and Chungnam Area

  • Jang, Sang-sik;Ha, Been
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • Among the energy consumption in building, the heating energy takes the largest part. Therefore, it is important to minimize the heat energy loss in building for the reduction of overall energy use in construction. The most important points for the minimization of energy loss in building are insulation and airtightness. Especially, in wood houses, airtightness is very important for energy saving as well as increase of durability. However, the researches on airtightness of wood buildings have been started recently and are very deficient especially in Korea. In this study, air leakage properties and airtightness performance were evaluated for light-frame wood houses built in Daejeon and Chungnam area. Total 7 houses were evaluated, among which four houses (Case 1 to Case 4) were in the construction stage before interior finish and the other three houses (Case 5 to Case 7) were after completion of construction work. The tests for airtightness were conducted by pressurization-depressurization method, and the factors included in the measurements includes air leakage rate at 50 Pa (CMH50), air change rate at 50 Pa (ACH50), equivalent leakage area (EqLA) and EqLA per floor area. As a result of this study, key air leakage points in wood houses were found to be the gaps between floor and wall, the holes for wiring and plumbing, the double glasses windows and the entrance doors. The average value of ACH50 for the houses after completion of construction work was $3.5h^{-1}$ that was similar to Europe standard ($3.0h^{-1}$). ACH50 was proportional to EqLA per floor area but inversely proportional to the internal volume, the net floor area and the area of window.

Calculation of Carbon Stocks on Korean Traditional House (Hanoks) in Korea

  • Kang, Chan Young;Kang, Seog Goo
    • Journal of the Korea Furniture Society
    • /
    • v.29 no.1
    • /
    • pp.40-48
    • /
    • 2018
  • This study analyzes the contribution of hanok that construction in reducing greenhouse gas (GHG) emissions in Korea by calculating the carbon storage of hanoks and comparing it to different housing types in Korea. The hanok is a traditional Korean house. And it were first designed and built in the $14^{th}$ century during thd Joseon Dynasty. According to our results, the number of hanoks in 2016 was approximately 547,085 which was accounting for 7.8% of the total construction market, This study found Gyeongbuk with 95,083, Jeonnam with 88,981, Gyeongnam with 76,388 and Seoul with 43,519 hanoks. According to the GHG Inventory Report for 2016, Korea's total annual GHG emissions amounted to 650 million $tCO_2$, with the carbon stocks in hanoks amounting to 19.2 million $tCO_2$. This accounts for 2.8% of Korea's total GHG emissions and 46.1% of the carbon absorbed by forests. Our results show that hanoks store four times more carbon than light-frame-wood-houses, and 15 times more carbon than concrete-reinforced and steel-frame houses. The main factors causing the hanok industry slowdown are the high construction costs, lack of government support, and insufficient knowledge of hanok architecture. Therefore, to further increase the carbon stock of hanok, more research is needed to improve the technical use of wood and reduce construction of the hanok and prepare legal and institutional arrangements related to hanok industry.

  • PDF

Analysis of Airtightness and Air Leakage of Wooden Houses in Korea

  • Kim, Sejong;Chang, Yoon-Seong;Park, Joo-Saeng;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.828-835
    • /
    • 2017
  • Airtightness of buildings is one of critical aspects of its energy performance. To build up references of airtightness of wooden houses built in Korea, blower door tests have been carried out in 42 houses since 2006. Causes of air leakage were investigated recently. The average value of air change rate was $3.7h^{-1}$ for light frame house and $5.5h^{-1}$ for post-beam construction at ACH50 (air change per hour at 50 Pa air pressure difference). Foam type insulation was more advantageous in ensuring building airtightness than glass fiber batt. Airtightness of wooden houses which were constructed after 2010 was improved to have less than $1.5h^{-1}$ of ACH50, threshold for application of artificial air change. The average air change rate of CLT (cross laminated timber) houses showed the lowest value, $1.1h^{-1}$, among the tested structures.

House Construction Activities and Research Trend of Wood Based Materials and Wooden Construction (주택건축(住宅建築) 활동(活動)과 목질(木質) 및 목조건축(木造建築)의 연구동향(硏究動向))

  • Lee, P.W.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.27-40
    • /
    • 1983
  • 최근(最近) 우리나라에서는 목재외(木材外)의 타계재료(他界材料)로의 건축(建築)이 이루어지고 있으므로 목조건축(木造建築)에 관한 연구(硏究)와 관심(關心)이 급속(急速)히 감소(減少)하고 있다. 이것은 국내(國內)에서의 목재생산(木材生産)이 극(極)히 저조(低調)하고 가격(價格)의 폭등(暴騰)으로 나타난 필연적(必然的)인 현상(現象)이라 하겠으나 목조건축(木造建築)이 아닌 타계재료(他界材料)로 시공(施工)한다고 하여도 목재(木材)는 꼭 쓰여지기 마련이다. 그러므로 주택(住宅)을 중심(中心)으로 각종건축물(各種建築物)의 구조(構造)를 이해(理解)함으로써 보다 합리적(合理的)인 목재이용(木材利用)을 꾀할 수 있을 것이다. 특히 목조주택(木造住宅)에 의존(依存)하고 있는 미국(美國)에서 경구조(輕構造)(light frame house construction) 또는 조립주택(組立住宅)(prefabricated house construction)에 의(依)한 목조주택건설(木造住宅建設)에 관(關)한 새로운 연구(硏究)가 착실(着實)하게 진행(進行)되어 큰 성과(成果)를 거두고 있어서 값 싼 주택(住宅)의 양산(量産)에 많은 도움을 주고 있음은 물론(勿論)이고 농용건축물(農用建築物)의 건설(建設)에도 크게 활용(活用)되고 있다. 더구나 8시간(時間)만에 한 채의 주택(住宅)을 건설(建設)할 수 있는 8시간건축(時間建設)(8 house construction)의 체계(體系)가 연구개발(硏究開發)되어 증가일로(增加一路)의 주택수요(住宅需要)를 메꾸어 나가고 있어서 우리나라에서도 부면(部面)에 관한 연구(硏究)가 추진(推進)되어야 할 것으로 믿는다.

  • PDF

Study on Moisture Variation in Light Frame Wall with Different Wall Assemblies (I) - Evaluation of Improvement with Laboratory Test - (벽체구성에 따른 목조벽체 내 수분변화에 대한 연구(I) - 실내 실험을 통한 개선 가능성 평가 -)

  • Kim, Se-Jong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.320-329
    • /
    • 2009
  • The purpose of this study was reducing the moisture accumulation in a wall, which can threaten the structural safety of light-frame wall and make residential environment poor. For the purpose, the laboratory test was carried out with different wall assemblies. Vapor retarder and air gap for ventilation were added to the typical wall. The improved performance of the proposed walls was examined through the test with distinct difference of temperature and relative humidity between outdoor and indoor air conditions. Increased dampproofing performance of additional vapor retarder was effective on reduction of moisture transmission from inside the house into the wall. However, unexpected high relative humidity was shown in the wall with two additional vapor retarder because of excessive dampproofing performance or inadequate location of vapor retarder. And, the open air gap induced the moisture transfer from inside the wall into outdoor air by ventilation. If the alternative to the induction of moisture transmission from inside the house into the wall with open air gap can be found, moisture reduction effect of that will be increased obviously.

Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House (경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구)

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

Dimensional Characteristics and Species Identification of Posts in the 19th century Houses in Cheongdo, Korea (경북 청도 지역 19세기 고택의 기둥의 크기와 수종 식별)

  • Eom, Young Geun;Oh, Sei Chang;Xu, Guang Zhu;Kim, Sam Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2009
  • Characteristics analysis and species identification of post were carried out in four old traditional wooden frame houses in Cheongdo-gun. The diameter and height of post, and distance between posts are related with each other. It was considered that the traditional wooden frame houses were constructed according to the diameter and height of post as a basic dimension in distance between posts. Of the wood member samples obtained in the site, softwoods in three old houses and hardwoods in one old house were separated through light microscopy. The hardwoods were found to be Castanea crenata. and softwoods were all identified as Pinus densiflora.