• Title/Summary/Keyword: light scanner

Search Result 139, Processing Time 0.025 seconds

Accuracy of Digital Impression Made from Different Elastomeric Impression Materials: Three-Dimensional Superimpositional Analysis (치과용 탄성 인상재를 기반으로 채득된 디지털 모형의 정확성 연구: 3차원 중첩 분석)

  • Kim, Ki-Baek;Jung, Jae-Kwan;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.14 no.2
    • /
    • pp.94-100
    • /
    • 2014
  • The purpose of this study was to evaluate the accuracy of digitized elastomeric impression materials of crown abutment, using non-contact white light scanner and virtual three-dimensional superimpositional analysis. The stone models and impressions were digitized white light scanner to create three-dimensional surface models. Stone models were used as CAD reference model (CRM). The resulting point clouds (ASC file) from digitization of impressions using converting software. Discrepancies between the points in the point clouds and CRM were measured by superimpositional software. Mean and standard deviation of values of discrepancies were analyzed by one-way ANOVA and multiple comparison (${\alpha}=0.05$). The mean discrepancy between the impressions for the extra-light body (XLB), light body (LB), and heavy body (HB) group were $5.10{\pm}1.45{\mu}m$, $6.30{\pm}1.87{\mu}m$, $9.80{\pm}1.52{\mu}m$, respectively. The different impression materials affected the digitization of impressions significantly (p<0.05). As a result, digitization of elastomeric impression materials on dental scanner was influenced by material sort.

Error correction in laser scanner 3D measurement (레이저 스캐너 3차원 계측에 있어서의 오차 보정)

  • 김응규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.94-101
    • /
    • 1996
  • When objects are scanned spatially by a laser-beam and mechanical mirror scanners, spatial information can be obtained, and then it is improtant to accurately obtain the parameters relating the light source and camera positions, etc.. In this paper, a calibration technique is presented for correction of measuremtn errors in a three-dimensional laser scanner system with two galvanometers. First, a model of the systematic errors is developed based on the geometry of the scanning system. Calibration parameter values are then iteratively adjusted with coarse-fine search in order to minimize errors (evaluation function) between measured and computed distances. It is shown that this correction method results in measurement precision suitable for practical use.

  • PDF

Measured Intensity Control Method of a Phase-shift Measurement Based Laser Scanner by using APD Bias Voltage Characteristic (위상 검출 방식 레이저 스캐너의 APD bias 전압 특성을 이용한 검출신호세기 제어 방법)

  • Jang, Jun-Hwan;Yoon, Hee-Sun;Hwang, Sung-Ui;Park, Kyi-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1096-1100
    • /
    • 2012
  • In the phase-shift measurement method, the distance light travels can be obtained based on the phase difference between the reference signal and the measured signal. When the object having various colors is measured, the intensity of the measured signal much varies even at the same distance, and it causes different phase delay due to wide dynamic range input to a signal processing circuit. In this work, an measured intensity control method is proposed to solve this phase delay problem.

Incoherent Optical Signal Processor Using an Acousto-Optic Modulator and a Scanner (어쿠스토옵틱 광변조기와 스캐너를 사용한 인코히런트 광신호 처리기)

  • Park, Jin-Woo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.2016-2024
    • /
    • 1989
  • A versatile incoherent optical processing system is developed and analyzed in detail, in which an acousto-optic modulator is used to generate the temporal offset frequency for heterodyning and an optical scanner to process the input object in scanning mode. The operational characteristics of the systems are studied with respect to spatial filtering in terms of the spectral width change of the light source, the temporal offset frequency, and a scanning rate. To enhance the system's capability, two schemes for tuning the system's OTF, structural tuning and defocused object tuning, are also developed and verified with the MTF measurements and computer calculations.

  • PDF

Developing a Scanner for Assessing Foliage Moisture

  • Nakajima, Isao;Ohyama, Futoshi;Juzoji, Hiroshi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.6 no.3
    • /
    • pp.155-164
    • /
    • 2019
  • We intended to confirm that microwave attenuation by tree leaves is strongly linked to water content in leaves. We sampled natural broadleaves, including Japanese cinnamon, and investigated their effects on the microwave (3 to 20 GHz) frequency characteristics using a network analyzer. Experiments determined that microwave attenuation by foliage increases as a linear function of frequency per unit weight (gram). As the frequency increases, the spatial resolution increases, but the phase difference (imaginary component) increases. So we solved the dispersion of phase difference by sweeping the frequency and taking the intermediate value. Based on these experimental results, we developed a microwave scanner on 10Ghz to describe foliage moisture as a image and to enable assessments of leaf condition. Photosynthesis is the process whereby plants synthesize oxygen and sugars from carbon dioxide and water, thereby converting light energy into chemical energy. Since water is a major parameter of photosynthesis, the quantity of water accumulated inside a leaf reflects leaf health. The equipment described here and related microwave technologies will help assess the capacity of leaves to absorb atmospheric carbon dioxide.

The Developement of Small 360° Oral Scanner Lens Module (소형 360° 구강 스캐너 렌즈 모듈 개발)

  • Kwak, Dong-Hoon;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.858-861
    • /
    • 2018
  • In this paper, we propose the development of a small $360^{\circ}$ oral scanner lens module. The proposed small $360^{\circ}$ oral scanner lens module consists of a small $360^{\circ}$ high resolution(4MegaPixel) lens optical system, a 15mm image sensor unit, and a small $360^{\circ}$ mouth scanner lens external shape. A small $360^{\circ}$ high resolution lens optical system produces a total of nine lenses, the outer diameter of the lens not less than 15mm for use by children through the ages of adulthood. Light drawn by a small $360^{\circ}$ high resolution lens optical system is $90^{\circ}$ flexion so that image images are delivered to image sensors. The 15mm image sensor unit sends the converted value to the ISP(Image Signal Processor) of the embedded board after an image array through the column and the row address of the image sensor. The small $360^{\circ}$ mouth scanner lens outer shape was designed to fix the race to the developed lens. Results from authorized testing agencies to assess the performance of proposed small $360^{\circ}$ oral scanner lens modules, The optical resolving power of $360^{\circ}$ lens was more than 30% at 150 cycles/mm, $360^{\circ}$ lens angle was $360^{\circ}$ in vertical direction, $42^{\circ}{\sim}85^{\circ}$ in vertical direction, and lens distortion rate was 5% or less. It produced the same result as the world's highest level.

Surface Measurement of Microstructures Using Optical Pick-up Based Scanner (광픽업 스캔 장치를 이용한 미소 구조물의 표면 측정)

  • Kim, Jae-Hyun;Park, Jung-Yul;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.73-76
    • /
    • 2010
  • The issue of inspection and characterization of microstructures has emerged as a major consideration in design, fabrication, and detection of MEMS devices. However, the conventional measurement techniques, including scanning electron microscopy (SEM) imaging, atomic force microscopy (AFM) scanning, and mechanical surface profiler, require often destructive process or may be difficult to measure with a wafer scale. In this paper, we characterize the surface profiles of microstructures using an optical scanner based on a DVD pick-up module. Scanning images of the microstructures are successfully generated using the intensity of reflected light from different depths of the surface profiles, based on the focus error signal (FES) from photodiodes. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and low cost, compared to conventional measurement techniques.

320-Channel Multi-Frequency Trans-Admittance Scanner(TAS) for Anomaly Detection (도전율 및 유전율이 다른 병소의 검출을 위한 320-채널 다주파수 Trans-Admittance Scanner(TAS))

  • Oh, Tong-In;Lee, Min-Hyoung;Kim, Hee-Jin;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.84-94
    • /
    • 2007
  • In order to collect information on local distribution of conductivity and permittivity underneath a scan probe, we developed a multi-frequency trans-admittance scanner (TAS). Applying a sinusoidal voltage with variable frequency on a chosen distal part of a human body, we measure exit currents from 320 grounded electrodes placed on a chosen surface of the subject. The electrodes are packaged inside a small and light scan probe. The system includes one voltage source and 17 digital ammeters. Front-end of each ammeter is a current-to-voltage converter with virtual grounding of a chosen electrode. The rest of the ammeter is a voltmeter performing digital phase-sensitive demodulation. Using resistor loads, we calibrate the system including the scan probe to compensate frequency-dependent variability of current measurements and also inter-channel variability among multiple. We found that SNR of each ammeter is about 85dB and the minimal measurable current is 5nA. Using saline phantoms with objects made from TX-151, we verified the performance of the lesion estimation algorithm. The error rate of the depth estimation was about 19.7%. For the size estimate, the error rate was about 15.3%. The results suggest improvement in lesion estimation algorithm based on multi-frequency trans-admittance data.

Development of Projection Scanbeam-SLA using Liquid Crystal Display and Visible Light Emitting Diode (LCD와 가시광선 LED를 사용한 전사방식의 Scanbeam-SLA 개발)

  • Yoon, Su Hyun;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.340-348
    • /
    • 2013
  • In Projection Stereolithography Apparatus (PSLA), Digital Micromirror Device (DMD) and Liquid Crystal Display (LCD) are used as a beam pattern generator. The DMD shows high resolution, but it is mostly applied in micro stereolithography due to high cost and fabricable area. In LCD, the size of pattern beam is freely controlled due to various panel sizes. The LCD, however, has some limitations such as short life time by the high power light source, non-uniform light intensity of pattern beam and low transmittance of UV-light. To solve these problems in LCD-based PSLA, a Scanbeam-SLA with LCD of 19 inches and visible LED-array is developed. In this system, the light module works like a scanner for uniform illumination. The system configuration, working principle and fabrication examples are addressed in this study.

The Study of the Effects of Basis Weight and Formation on Tensile and Tear Strengths Using Light Transmitance Method (빛 투과법을 이용한 평량과 지합의 인장 및 인열 강도에 미치는 영향 분석)

  • 남원석;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.57-62
    • /
    • 1998
  • This study is intended to analyze how formations affect the tensile and tear strengths of paper at the same basis weight. Light transmitance method using a scanner was employed to measure the degree of formation in terms of gray scale. Scanning method showed close relationship between gray scale value and basis weight. At the same basis weight a sheet of paper with good formation had higher tensile strength in terms of breaking length than that of a paper with poor formation. There was little difference in tear strength depending on formations.

  • PDF