• Title/Summary/Keyword: light precipitation

Search Result 164, Processing Time 0.027 seconds

A Study on the Transparent Glass-Ceramics on the MgO-$Al_2O_3$-$SiO_2$ System (투명 결정화유리에 관한 연구 MgO-$Al_2O_3$-$SiO_2$계에 대하여)

  • 박용완;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.406-414
    • /
    • 1991
  • The composition of base glass was selected as MgO 8, Al2O3 24, SiO2 68 in weight percent. TiO2 and ZrO2 were added to the base glass to investigate their effects as nucleating agents. In the case of ZrO2 addition, the optimum temperature for nucleation, which was related to the precipitation of tetragonal ZrO2, was 80$0^{\circ}C$. The optimum growth condition for the crystal was 87$0^{\circ}C$ for 8 hrs, and the major crystal phases precipitated in the samples were $\beta$-quartz ss. and mullite. The light transmissivity turned out to be around 80 per cent. On the other hand, when the TiO2 was added, it was difficult to determine the nucleating temperature, because the samples turned easily into translucency during the heat treatment. Therefore, it was almost impossible to retain transparency in the samples. The light transmissivity was below 30 per cent.

  • PDF

Preparation and Photochemical Properties of Zn0.95Mn0.05 (Zn0.95Mn0.05의 제조 및 광화학적 특성)

  • Jung, Dong-woon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.560-564
    • /
    • 2009
  • ZnO and Mn-substituted $Zn_{0.95}Mn_{0.05}O$ were synthesized by using precipitation method. $Zn_{0.95}Mn_{0.05}O$ compound absorbed UV light as well as hole range of visible light ($400{\sim}800$ nm). Results obtained revealed that $Zn_{0.95}Mn_{0.05}O$ showed higher activity than P-25 for visible-photocatalytic degradation of 1,4- dichlorobenzene.

Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light

  • Wang, Wei;He, Mingyi;Zhang, Huan;Dai, Yatang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.179-182
    • /
    • 2016
  • In this paper, 10 nm $Fe_3O_4$ nanoparticles were modified on the surface of $2{\mu}m$ flower-like bismuth oxychloride (BiOCl) spheres by a facile co-precipitation method. The results showed that the $Fe_3O_4/BiOCl$ nanocomposites exhibited excellent photocatalytic activity and superparamagnetic property ($M_s=3.22emu/g$) under visible light for Rhodamine B (RhB) degradation. Moreover, the $Fe_3O_4-BiOCl$ photocatalyst possessed magnetic recyclable property, which could maintain high photocatalytic effective even after 20 cycle times. These characteristic indicates a promising application for wastewater treatment.

Neodymium doped mixed metal oxide derived from CoAl-layered double hydroxide: Considerable enhancement in visible light photocatalytic activity

  • Khodam, Fatemeh;Amani-Ghadim, Hamid Reza;Aber, Soheil;Amani-Ghadim, Ali Reza;Ahadzadeh, Iraj
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.311-324
    • /
    • 2018
  • Herein,the Neodymium ion ($Nd^{3+}$) doped CoAl-LDH have been successfully prepared via co-precipitation method and was used as a precursor of Nd-doped CoAl-mixed metal oxides (MMO). The photocatalytic activity of doped LDH and MMO was investigated in the degradation of an azo dye, C.I. Acid Red 14, under visible light irradiation. DRS and PL analysis demonstrated decreasing in the band gap energy and recombination of photo-induced charge carriers of Nd-doped LDH and MMO compared with the pristine CoAL-LDH. Due to significant difference in photocatalytic performance. A power law empirical kinetic model was obtained for predicting the photocatalytic degradation efficiency.

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

Development of relationship equation for vehicle sensor signal and observed rainfall (차량용 강우센서의 Signal과 관측강우의 관계식 개발)

  • Lee, Suk Ho;Kim, Young Gon;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • A vehicle rainfall sensor is made to control the operating speed of wipers depending on rainfall. Therefore this is the apparatus to determine the velocity phase of the wipers roughly based on the amount of rainfall. However, the technology which can judge the size of rainfall amount besides determining speed level of the wipers is developing according to the development of the function of rainfall sensor due to the development of technology. In this study, a rainfall measurement by using light scattering by precipitation particles was used. This measurement is to use light signal reflection from front glass and the bigger particle is the less detection of light by light scattering. The detection area of the rainfall sensor and detection channel were extended sizes to increase the accuracy of the rainfall. Also the W-S-R relational expression was developed by using a relationship between the specific precipitation (R) and the amount of sensor detection (S) when there is speed change of the wipers (W) and an indoor rainfall apparatus was used to convert sensing signal to rainfall. The signal system of vehicle rainfall sensor can be converted to the actual rainfall amount by using this formula and if this is provided to users then the vehicle observation network can produce higher-resolution than actual observation network can be produced.

Synthesis and Properties of SrMoO4 Phosphors Doped with Various Rare Earth Ions for Anti-Counterfeiting Applications (위조 방지 분야에 응용 가능한 다양한 희토류 이온이 도핑된 SrMoO4 형광체의 제조 및 특성)

  • Moon, Tae-Ok;Jung, Jae-Yong;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.406-412
    • /
    • 2020
  • SrMoO4:RE3+ (RE=Dy, Sm, Tb, Eu, Dy/Sm) phosphors are prepared by co-precipitation method. The effects of the type and the molar ratio of activator ions on the structural, morphological, and optical properties of the phosphor particles are investigated. X-ray diffraction data reveal that all the phosphors have a tetragonal system with a main (112) diffraction peak. The emission spectra of the SrMoO4 phosphors doped with several activator ions indicate different multicolor emissions: strong yellow-emitting light at 573 nm for Dy3+, red light at 643 nm for Sm3+, green light at 545 nm for Tb3+, and reddish orange light at 614 nm for Eu3+ activator ions. The Dy3+ singly-doped SrMoO4 phosphor shows two dominant emission peaks at 479 and 573 nm corresponding to the 4F9/26H15/2 magnetic dipole transition and 4F9/26H13/2 electric dipole transition, respectively. For Dy3+ and Sm3+ doubly-doped SrMoO4 phosphors, two kinds of emission peaks are observed. The two emission peaks at 479 and 573 nm are attributed to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ and two emission bands centered at 599 and 643 nm are ascribed to 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increases from 1 to 5 mol%, the intensities of the emission bands of Dy3+ gradually decrease; those of Sm3+ slowly increase and reach maxima at 5 mol% of Sm3+ ions, and then rapidly decrease with increasing molar ratio of Sm3+ ions due to the concentration quenching effect. Fluorescent security inks based on as-prepared phosphors are synthesized and designed to demonstrate an anti-counterfeiting application.

Photocatalytic Degradation of Oxytetracycline Using Co-precipitation Method Prepared Fe2O3/TiO2 Nanocomposite

  • Jia, Yuefa;Liu, Chunli;Li, Rong
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.46-50
    • /
    • 2016
  • $Fe_2O_3/TiO_2$ nanocomposite were successfully synthesized by co-precipitation method using $Fe(NO_3)_3{\cdot}9H_2O$ and $Ti(SO_4)_2$ as raw materials. Structural and textural features of the mixed oxide samples were characterized by X-ray diffractometer, field emission scanning electron microscopy and energy-dispersive X-ray. The effects of initial concentration of oxytetracycline (OTC), different competitive ions and organics on the photocatalytic degradation rate of OTC by the $Fe_2O_3/TiO_2$ nanocomposite were analyzed under UV and visible light irradiation. The results indicate that the optimized initial concentration of OTC was 50 mg/L to achieve the best photocatalytic efficiency. $Cu^{2+}$, $NH_4{^+}$, $C_3H_8O$ and EDTA in the aqueous suspension were found to suppress the degradation rate of OTC, whereas the effect of $NO_3{^-}$ and $H_2C_2O_4$ can be ignored.

Satellite Monitoring and Prediction for the Occurrence of the Red Tide in the Middle Coastal Area in the South Sea of Korea

  • Yoon, Hong-Joo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • It was studied the relationship between the red tide occurrence and the meteorological and oceanographic factors, the choice of potential area for red tide occurrence, and the satellite monitoring for red tide. From 1990 through 2001, the red tide continuously appeared and the number of red tide occurrence increased every year. Then, the red tide bloomed during the periods of July and August. An important meteorological factor governing the mechanisms of the increasing in number of red tide occurrence was heavy precipitation. Oceanographic factors of favorable marine environmental conditions for the red tide formation included warm water temperature, low salinity, high suspended solid, low phosphorus, low nitrogen. A common condition for the red tide occurrence was heavy precipitation 2∼4 days earlier, and the favorable conditions for the red tide formation were high air temperature, proper sunshine and light winds for the day in red tide occurrence. From satellite images, it was possible to monitor the spatial distributions and concentrations of red tide. It was founded the potential areas for red tide occurrence in August 2000 by CIS conception: Yeosu∼Dolsan coast, Gamak bay, Namhae coast, Marado coast, Goheung coast, Deukryang bay, respectively.